access icon free Influence of grading capacitor of multiple-break circuit breaker on the extinction of secondary arc – a new method for reducing dead time

To guarantee the uniform distribution of transient recovery voltage for double-break circuit breaker, grading capacitors are often installed in parallel with each interrupter unit. In this study, the influence of the capacitors on the secondary arc is systematically investigated. First, the equivalent circuit for ultra high voltage transmission line is developed. Taking the capacitor into account, the formulas for the arc current and the recovery voltage, not only the steady state but also the transient, are derived. Meanwhile, the dynamic models for primary arc and secondary arc models have been established in the environment of EMTP. Then, a series of simulations have been performed. The impact of the capacitor on the key quantities of secondary arc, such as the rate of rise of recovery voltage, the arcing time, and the maximum instantaneous current, is comparatively analysed. Furthermore, the capacitor can be extended to suppress the secondary arc, and a novel method is proposed in this study. The operating principle of this method is presented, and its effectiveness is validated through electromagnetic transient simulations. For practical implementation, the technical requirement is finally discussed. The proposed method is simple in structure, and it provides an alternative to the neutral reactor.

Inspec keywords: capacitors; power transmission lines; interrupters; circuit breakers

Other keywords: EMTP; recovery voltage; equivalent circuit; electromagnetic transient simulation; grading capacitor; secondary arc model; multiple-break circuit breaker; ultrahigh-voltage transmission line; neutral reactor; double-break circuit breaker; dead time reduction; transient recovery voltage; dynamic model; arcing time; grading capacitors; arc current; maximum instantaneous current; primary arc model; interrupter unit

Subjects: Switchgear

References

    1. 1)
      • 14. Fugal, T., Koenig, D.: ‘Influence of grading capacitors on the breaking performance of a 24 kV vacuum breaker series deign’, IEEE Trans. Dielectr. Electr. Insul., 2003, 10, (4), pp. 569575.
    2. 2)
      • 24. Strom, A.P.: ‘Long 60-cycle arcs in air’, Trans. Am. Inst. Electr. Eng., 1946, 65, pp. 113117.
    3. 3)
      • 2. Dudurych, I.M., Gallagher, T.J., Rosolowski, E.: ‘Arc effect on single-phase reclosing time of a UHV power transmission line’, IEEE Trans. Power Deliv., 2004, 19, (2), pp. 854860.
    4. 4)
      • 1. IEEE Power System Relaying Committee Working Group: ‘Protective relaying performance reporting’, IEEE Trans. Power Deliv., 1992, 7, (4), pp. 18921899.
    5. 5)
      • 26. Haginomori, E., Koshiduka, T., Ikeda, H., et al: ‘Transients in power systems, theory and practice using simulation programs’ (Wiley, New York, 2016).
    6. 6)
      • 16. Val Escudero, M., Dudurych, I., Redfern, M.A.: ‘Characterization of ferroresonant modes in HV substation with CB grading capacitors’, Electr. Power Syst. Res., 2007, 77, (11), pp. 15061513.
    7. 7)
      • 9. Knudsen, N.: ‘Single-phase switching of transmission lines using reactor for extinction of the secondary arc’. CIGRE, Report No. 310, 1962.
    8. 8)
      • 21. Xu, Z.Y., Yan, X.Q., Zhang, X., et al: ‘Compensating scheme for limiting secondary arc current of 1000 kV ultra-high voltage long parallel lines’, IET Gener. Transm. Distrib., 2013, 7, (1), pp. 18.
    9. 9)
      • 15. Wu, G., Ruan, J., Huang, D., et al: ‘Review of grading capacitors of multi-break vacuum circuit breakers’, High Volt. Appar., 2011, 47, (3), pp. 7781.
    10. 10)
      • 8. Johns, A.T., Aggarwal, R.K., Song, Y.H.: ‘Improved techniques for modelling fault arcs on faulted EHV transmission systems’, Proc. IEE Gener. Transm. Distrib., 1994, 141, (2), pp. 148154.
    11. 11)
      • 28. Brahma, M., Sukumar, A., Girgis, A.: ‘Fault location on a transmission line using synchronized voltage measurements’, IEEE Trans. Power Deliv., 2004, 19, (4), pp. 16191622.
    12. 12)
      • 7. Tavares, M.C., Talaisys, J., Camara, A.: ‘Voltage harmonic content of long artificially generated electrical arc in out-door experiment at 500 kV towers’, IEEE Trans. Dieletr. Electr. Insul., 2014, 21, (3), pp. 10051014.
    13. 13)
      • 19. Alexander, C.K., Sadiku, O.M.N.: ‘Fundamental of electric circuits’ (McGraw-Hill, New York, 2004).
    14. 14)
      • 18. Zadeh, M.R.D., Pasand, M.S., Kadivar, A.: ‘Investigation of neutral reactor performance in reducing secondary arc current’, IEEE Trans. Power Deliv., 2008, 23, (4), pp. 24722479.
    15. 15)
      • 27. Schnerer, H.N., Stperling, B.R., Chadwick, J.W.: ‘Single phase switching tests on 765 kV and 750 kV transmission Lines’, IEEE Trans Power Appar. Syst., 1985, 104, (6), pp. 15371548.
    16. 16)
      • 30. Chen, W., Yan, X., He, Z., et al: ‘Simulation for secondary arc caused by single-phase grounding in UHV ac transmission line’, High Volt. Eng., 2010, 36, (1), pp. 16.
    17. 17)
      • 11. Shperling, B.R., Fakheri, A., Ware, B.J.: ‘Compensation scheme for single-pole switching on untransposed transmission lines’, IEEE Trans. Power Appar. Syst., 1978, 97, (4), pp. 14211429.
    18. 18)
      • 3. Kimbark, E.W.: ‘Suppression of ground-fault arcs on single pole switched EHV lines by shunt reactors’, IEEE Trans. Power Appar. Syst., 1964, 83, pp. 285290.
    19. 19)
      • 25. Maikopar, A.S.: ‘The quenching of an open arc’, Electrichestvo, 1964, 28, (4), pp. 6469.
    20. 20)
      • 12. Ahn, S.P., Kim, C.H., Aggarwal, R.K., et al: ‘An alternative approach to adaptive single pole auto-reclosing in high voltage transmission systems based on variable dead time control’, IEEE Trans. Power Deliv., 2001, 16, (4), pp. 676686.
    21. 21)
      • 10. Hasibar, R.M., Legate, A.C., Brunke, J., et al: ‘The application of high-speed grounding switches for single-pole reclosing on 500 kV power systems’, IEEE Trans. Power Appar. Syst., 1981, 100, (4), pp. 15121515.
    22. 22)
      • 22. Xu, Z.Y., Zhang, X., Yan, X.Q., et al: ‘Optimal compensating scheme for limiting secondary arc current of 1000-kV UHV short parallel lines’, IET Gener. Transm. Distrib., 2012, 6, (12), pp. 12351242.
    23. 23)
      • 13. Sheng, B.L., Van der Sluis, L.: ‘A new synthetic test circuit for ultra-high-voltage circuit breakers’, IEEE Trans. Power Deliv., 1997, 12, (4), pp. 15141519.
    24. 24)
      • 23. Huang, D., Shu, Y., Ruan, J., et al: ‘Ultra high voltage transmission in China: developments, current status and future prospects’, Proc. IEEE, 2009, 97, (3), pp. 555589.
    25. 25)
      • 20. Strom, A.P.: ‘Long 60-cycle arcs in air’, Trans. Am. Inst. Electr. Eng., 1946, 65, (3), pp. 113118.
    26. 26)
      • 29. Ahn, S.P., Kim, C.H., Ju, H.J.: ‘The investigation for adaptation of high speed grounding switches on the Korean 765 kV single transmission line’. Proc. Int. Conf. on Power System Transients (IPST 2005), Montreal, Canada, 19–23 June 2005.
    27. 27)
      • 5. Danyek, M., Handl, P.: ‘Improving the reliability of experimental data about secondary arc duration’. Proc. of the 17th Hungarian–Korean Seminar, EHV Technologies-II, Keszthely-Lake, Balaton, Hungary, October 2001.
    28. 28)
      • 4. Fakheri, A.J., Shuter, T.C., Schneider, J.M., et al: ‘Single phase switching tests on the AEP 765 kV system – extinction time for large secondary arc current’, IEEE Trans. Power Appar. Syst., 1983, 102, (8), pp. 27752781.
    29. 29)
      • 17. Chinese National Standards, GB/T 4787-2010: ‘Grading capacitors for high voltage alternating current circuit breakers’, 2010(in Chinese).
    30. 30)
      • 6. Prikler, L., Bánfai, G.: ‘Testing EHV secondary arcs’. IEEE Porto Power Tech Conf., Porto, Portugal, 10–13 September 2001.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.1295
Loading

Related content

content/journals/10.1049/iet-gtd.2016.1295
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading