Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Supervising distance relay during power swing using synchrophasor measurements

Power swing blocking (PSB) is essential for distance relay to avoid unintended tripping of transmission lines. Conventional PSB techniques, which use local information, may not be able to distinguish power swing from fault for all system conditions. An accurate PSB algorithm is proposed in this study, which uses synchrophasor measurements to distinguish power swing from fault. During power swing, the impedance trajectory is predicted for next ten cycles to block the distance relay operation reliably. The prediction approach overcomes the latency issue with synchrophasor data in order to initiate the blocking decision for zone 1/zone 2 of distance relay well in advance. The proposed method is tested for two-area four-machine and ten-machine 39-bus systems under different conditions simulated in power systems computer-aided design/electro-magnetic transient design and control software and compared with conventional method. Execution time of the proposed method including latencies in data arrival are considered in the test results.

References

    1. 1)
      • 5. Gautam, S., Brahma, S.M.: ‘Out-of-step blocking function in distance relay using mathematical morphology’, IET Gener. Trans. Distrib., 2012, 6, (4), pp. 313319.
    2. 2)
      • 25. Sachdev, M.S., Nagpal, M.: ‘A recursive least error squares algorithm for power system relaying and measurement applications’, IEEE Trans. Power Deliv., 1991, 6, (3), pp. 10081015.
    3. 3)
      • 26. Zare, J., Aminifar, F., Sanaye-Pasand, M.: ‘Communication-constrained regionalization of power systems for synchrophasor-based wide-area backup protection scheme’, IEEE Trans. Smart Grid, 2015, 6, (3), pp. 15301538.
    4. 4)
      • 27. IEEE Std. C37.244-2013: ‘IEEE Guide for phasor data concentrator requirements for power system protection, control, and monitoring’. May 2013, pp. 165.
    5. 5)
      • 7. Benmouyal, G., Hou, D., Tziouvaras, D.: ‘Zero-setting power-swing blocking protection’. Proc. 31st Annual Western Protective Relay Conf., 2004, pp. 1921.
    6. 6)
      • 29. IEEE Std. C37.118.2-2011 (Revision of IEEE Std. C37.118-2005): ‘IEEE standard for synchrophasor data transfer for power systems’. December 2011, pp. 153.
    7. 7)
      • 23. Swati, A.L., Soman, S.A.: ‘Predictive analytic to supervise zone 1 of distance relay using synchrophasors’, IEEE Trans. Power Deliv., 2016, 31, (4), pp. 18441854.
    8. 8)
      • 15. Mahamedi, B., Zhu, J.G.: ‘A novel approach to detect symmetrical faults occurring during power swings by using frequency components of instantaneous three-phase active power’, IEEE Trans. Power Deliv., 2012, 27, (3), pp. 13681376.
    9. 9)
      • 19. Tziouvaras, D.A., Hou, D.: ‘Out-of-step protection fundamentals and advancements’. Available at http://www2.selinc.com/techpprs/6163.pdf.
    10. 10)
      • 10. Chothani, N.G., Bhalja, B.R., Parikh, U.B.: ‘New support vector machine-based digital relaying scheme for discrimination between power swing and fault’, IET Gener. Trans. Distrib., 2014, 8, (1), pp. 1725.
    11. 11)
      • 4. Martuscello, L., Krizauskas, E., Holbach, J., et al: ‘Tests of distance relay performance on stable and unstable power swings reported using simulated data of the August 14th 2003 system disturbance’. Proc. 62nd Annual Conf. for Protective Relay Engineers, March 2009, pp. 236255.
    12. 12)
      • 20. Power System Relaying Committee of the IEEE Power Engineering Society: ‘Use of synchrophasor measurements in protective relaying applications’. PSRC WG C14, August 2013. Available at http://www.pes-psrc.org.
    13. 13)
      • 3. Mooney, J.P.E., Fischer, N.: ‘Application guidelines for power swing detection on transmission systems’. Proc. Power Systems Conf., PS-2006, March 2006, pp. 159168.
    14. 14)
      • 17. Khodaparast, J., Khederzadeh, M.: ‘Three-phase fault detection during power swing by transient monitor’, IEEE Trans. Power Syst., 2015, 30, (5), pp. 25582565.
    15. 15)
      • 14. Lotfifard, S., Faiz, J., Kezunovic, M.: ‘Detection of symmetrical faults by distance relays during power swings’, IEEE Trans. Power Deliv., 2010, 25, (1), pp. 8187.
    16. 16)
      • 11. Zadeh, H.K., Li, Z.: ‘A novel power swing blocking scheme using adaptive neuro-fuzzy inference system’, Electr. Power Syst. Res., 2008, 78, (7), pp. 11381146.
    17. 17)
      • 21. Navalkar, P.V., Soman, S.A.: ‘Secure remote backup protection of transmission lines using synchrophasors’, IEEE Trans. Power Deliv., 2011, 26, (1), pp. 8796.
    18. 18)
      • 28. Castello, P., Ferrari, P., Flammini, A., et al: ‘A new IED with PMU functionalities for electrical substations’, IEEE Trans. Instrum. Meas., 2013, 62, (12), pp. 32093217.
    19. 19)
      • 12. Lin, X., Li, Z., Ke, S., et al: ‘Theoretical fundamentals and implementation of novel self-adaptive distance protection resistant to power swings’, IEEE Trans. Power Deliv., 2010, 25, (3), pp. 13721383.
    20. 20)
      • 30. Das, S., Sidhu, T.: ‘A simple synchrophasor estimation algorithm considering IEEE standard C37.118.1-2011 and protection requirements’, IEEE Trans. Instrum. Meas., 2013, 62, (10), pp. 27042715.
    21. 21)
      • 6. Brahma, S.M.: ‘Distance relay with out-of-step blocking function using wavelet transform’, IEEE Trans. Power Deliv., 2007, 22, (3), pp. 13601366.
    22. 22)
      • 32. EES software. Available at http://www.mhhe.com/engcs/mech/ees/download.html.
    23. 23)
      • 1. Power System Relaying Committee of the IEEE Power Engineering Society: ‘Power swing and out-of-step considerations on transmission line’. PSRC WG D6, July 2005. Available at http://www.pes-psrc.org.
    24. 24)
      • 9. Seethalekshmi, K., Singh, S.N., Srivastava, S.C.: ‘A classification approach using support vector machines to prevent distance relay maloperation under power swing and voltage instability’, IEEE Trans. Power Deliv., 2012, 27, (3), pp. 11241133.
    25. 25)
      • 24. Hazra, J., Reddi, R.K., Das, K., et al: ‘Power grid transient stability prediction using wide area synchrophasor measurements’. Proc. Third IEEE PES Int. Conf. on ISGT, Europe, October 2012, pp. 18.
    26. 26)
      • 16. Dubey, R., Samantaray, S.R.: ‘Wavelet singular entropy-based symmetrical fault-detection and out-of-step protection during power swing’, IET Gener. Trans. Distrib., 2013, 7, (10), pp. 11231134.
    27. 27)
      • 8. Rao, J.G., Pradhan, A.K.: ‘Power-swing detection using moving window averaging of current signals’, IEEE Trans. Power Deliv., 2015, 30, (1), pp. 368376.
    28. 28)
      • 31. IEEE Std. 1646-2004: ‘IEEE standard communication delivery time performance requirements for electric power substation automation’. 2005, pp. 124.
    29. 29)
      • 18. Rao, J.G., Pradhan, A.K.: ‘Differential power-based symmetrical fault detection during power swing’, IEEE Trans. Power Deliv., 2012, 27, (3), pp. 15571564.
    30. 30)
      • 22. Zare, J., Aminifar, F., Sanaye-Pasand, M.: ‘Synchrophasor-based wide-area backup protection scheme with data requirement analysis’, IEEE Trans. Power Deliv., 2015, 30, (3), pp. 14101419.
    31. 31)
      • 2. Novosel, D., Bartok, G., Henneberg, G., et al: ‘IEEE PSRC report on performance of relaying during wide-area stressed conditions’, IEEE Trans. Power Deliv., 2010, 25, (1), pp. 316.
    32. 32)
      • 13. Jafari, R., Moaddabi, N., Eskandari-Nasab, M., et al: ‘A novel power swing detection scheme independent of the rate of change of power system parameters’, IEEE Trans. Power Deliv., 2014, 29, (3), pp. 11921202.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.1110
Loading

Related content

content/journals/10.1049/iet-gtd.2016.1110
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address