http://iet.metastore.ingenta.com
1887

Optimal transmission access for generators in wind-integrated power systems: stochastic and robust programming approaches

Optimal transmission access for generators in wind-integrated power systems: stochastic and robust programming approaches

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Integrating wind generation in power systems has raised the issue of optimal transmission access for generators. The available transmission capacity for a generator is now subject to the uncertain wind generation. Therefore, the need for a transmission access mechanism has emerged. This study proposes three different optimisation models for calculating transmission access under uncertain wind generation. First, it develops a mathematical model to find the expected transmission access. A chance-constrained optimisation model is derived to find different levels of access to the transmission network with pre-specified reliability levels. The chance-constrained model provides detailed information regarding the available transmission access at different reliability levels. This gives options to a connecting generator regarding its choice of transmission access. Finally, a robust model for transmission access is proposed. The robust model provides the conservative transmission access which is assured against all future realisations of wind generation. The proposed expected, chance-constrained and robust approaches for optimal transmission access are numerically studied using an illustrative 2-bus example and the IEEE 30-bus and IEEE 300-bus case studies. The moment-matching technique is used to generate wind and demand scenarios. The numerical results show the utility of three derived models to calculate the optimal transmission access for generators.

References

    1. 1)
      • H. Zhang , P. Li .
        1. Zhang, H., Li, P.: ‘Probabilistic analysis for optimal power flow under uncertainty’, IET Gener. Transm. Distrib., 2010, 4, (5), pp. 553661.
        . IET Gener. Transm. Distrib. , 5 , 553 - 661
    2. 2)
      • (2014)
        2. CIGRE: ‘Review of transmission planning access requirements’ (CIGRE, 2014).
        .
    3. 3)
      • (2011)
        3. Hill Michael: ‘Development of transmission reliability standards for generators’ (Hill Michael, 2011).
        .
    4. 4)
      • S. De Breucker , J. Driesen , R. Belmans .
        4. De Breucker, S., Driesen, J., Belmans, R.: ‘Power quality in transmission grids: Guaranteed standards for power plants in France and the United Kingdom’. 13th Int. Conf. on Harmonics and Quality of Power, Wollongong, NSW, September 2008, pp. 16.
        . 13th Int. Conf. on Harmonics and Quality of Power , 1 - 6
    5. 5)
      • E. Uzuncan , M.R. Hesamzadeh .
        5. Uzuncan, E., Hesamzadeh, M.R.: ‘Optimal transmission entry capacity in wind-integrated power systems’. 2014 IEEE Int. Energy Conf. (ENERGYCON), Cavtat, Croatia, May 2014, pp. 14671473.
        . 2014 IEEE Int. Energy Conf. (ENERGYCON) , 1467 - 1473
    6. 6)
      • (2011)
        6. SONI: ‘Generator connection process’ (SONI, 2011).
        .
    7. 7)
      • (2014)
        7. AEMC: ‘First interim report – optional firm access, design and testing’ (AEMC, 2014).
        .
    8. 8)
      • (2001)
        8. PSERC: ‘Electric power transfer capability: concepts, applications, sensitivity, uncertainty’ (PSERC, 2001).
        .
    9. 9)
      • Y. Ou , C. Singh .
        9. Ou, Y., Singh, C.: ‘Assessment of available transfer capability and margins’, IEEE Trans. Power Syst., 2002, 17, (2), pp. 463468.
        . IEEE Trans. Power Syst. , 2 , 463 - 468
    10. 10)
      • A.M. Leite da Silva , J.G. de Carvalho Costa , L.A. da Fonseca Manso .
        10. Leite da Silva, A.M., de Carvalho Costa, J.G., da Fonseca Manso, L.A., et al: ‘Transmission capacity: availability, maximum transfer and reliability’, IEEE Trans. Power Syst., 2002, 17, (3), pp. 843849.
        . IEEE Trans. Power Syst. , 3 , 843 - 849
    11. 11)
      • F.B. Thiam , C.L. DeMarco .
        11. Thiam, F.B., DeMarco, C.L.: ‘Transmission expansion via maximization of the volume of feasible bus injections’, Electr. Power Syst. Res., 2014, 116, pp. 3644.
        . Electr. Power Syst. Res. , 36 - 44
    12. 12)
      • H. Zhang , P. Li .
        12. Zhang, H., Li, P.: ‘Chance constrained programming for optimal power flow under uncertainty’, IEEE Trans. Power Syst., 2011, 26, (4), pp. 24172424.
        . IEEE Trans. Power Syst. , 4 , 2417 - 2424
    13. 13)
      • E. Uzuncan , M.R. Hesamzadeh .
        13. Uzuncan, E., Hesamzadeh, M.R.: ‘Optimal firm transmission access using chance-constrained optimisation for renewable integration’. 2015 IEEE Power & Energy Society General Meeting, Denver, CO, July 2015, pp. 15.
        . 2015 IEEE Power & Energy Society General Meeting , 1 - 5
    14. 14)
      • D. Bertsimas , E. Litvinov , X.A. Sun .
        14. Bertsimas, D., Litvinov, E., Sun, X.A., et al: ‘Adaptive robust optimization for the security constrained unit commitment problem’, IEEE Trans. Power Syst., 2013, 28, (1), pp. 5263.
        . IEEE Trans. Power Syst. , 1 , 52 - 63
    15. 15)
      • L. Wu , M. Shahidehpour , Z. Li .
        15. Wu, L., Shahidehpour, M., Li, Z.: ‘Comparison of scenario-based and interval optimization approaches to stochastic SCUC’, IEEE Trans. Power Syst., 2012, 27, (2), pp. 913921.
        . IEEE Trans. Power Syst. , 2 , 913 - 921
    16. 16)
      • P. Xiong , P. Jirutitijaroen .
        16. Xiong, P., Jirutitijaroen, P.: ‘Two-stage adjustable robust optimisation for unit commitment under uncertainty’, IET Gener. Transm. Distrib., 2014, 8, (3), pp. 573582.
        . IET Gener. Transm. Distrib. , 3 , 573 - 582
    17. 17)
      • R. Jiang , J. Wang , M. Zhang .
        17. Jiang, R., Wang, J., Zhang, M., et al: ‘Two-stage minimax regret robust unit commitment’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 22712282.
        . IEEE Trans. Power Syst. , 3 , 2271 - 2282
    18. 18)
      • B. Hu , L. Wu , M. Marwali .
        18. Hu, B., Wu, L., Marwali, M.: ‘On the robust solution to SCUC with load and wind uncertainty correlations’, IEEE Trans. Power Syst., 2014, 29, (6), pp. 29522964.
        . IEEE Trans. Power Syst. , 6 , 2952 - 2964
    19. 19)
      • Z. Wang , F.L. Alvarado .
        19. Wang, Z., Alvarado, F.L.: ‘Interval arithmetic in power flow analysis’, IEEE Trans. Power Syst., 1992, 7, (3), pp. 13411349.
        . IEEE Trans. Power Syst. , 3 , 1341 - 1349
    20. 20)
      • A.T. Saric , A.M. Stankovic .
        20. Saric, A.T., Stankovic, A.M.: ‘An application of interval analysis and optimization to electric energy markets’, IEEE Trans. Power Syst., 2006, 21, (2), pp. 515523.
        . IEEE Trans. Power Syst. , 2 , 515 - 523
    21. 21)
      • J.E. Smith .
        21. Smith, J.E.: ‘Moment methods for decision analysis’, Manage. Sci., 1993, 39, (3), pp. 340358.
        . Manage. Sci. , 3 , 340 - 358
    22. 22)
      • U. Rubasheuski , J. Oppen , D.L. Woodruff .
        22. Rubasheuski, U., Oppen, J., Woodruff, D.L.: ‘Multi-stage scenario generation by the combined moment matching and scenario reduction method’, Oper. Res. Lett., 2014, 42, (5), pp. 374377.
        . Oper. Res. Lett. , 5 , 374 - 377
    23. 23)
      • K. Hoyland , S.W. Wallace .
        23. Hoyland, K., Wallace, S.W.: ‘Generating scenario trees for multi-stage decision problems’, Manage. Sci., 2001, 47, (2), pp. 295307.
        . Manage. Sci. , 2 , 295 - 307
    24. 24)
      • L. Zhen .
        24. Zhen, L.: ‘Task assignment under uncertainty: stochastic programming and robust optimisation approaches’, Int. J. Prod. Res., 2015, 53, (5), pp. 14871502.
        . Int. J. Prod. Res. , 5 , 1487 - 1502
    25. 25)
      • T. Assavapokee , M.J. Realff , J.C. Ammons .
        25. Assavapokee, T., Realff, M.J., Ammons, J.C.: ‘A min-max regret robust optimization approach for interval data uncertainty’, J. Optim. Theory Appl., 2008, 137, pp. 297316.
        . J. Optim. Theory Appl. , 297 - 316
    26. 26)
      • D.R. Biggar , M.R. Hesamzadeh . (2014)
        26. Biggar, D.R., Hesamzadeh, M.R.: ‘The economics of electricity markets’ (Wiley, 2014).
        .
    27. 27)
      • J.M. Morales , A.J. Conejo , H. Madsen . (2013)
        27. Morales, J.M., Conejo, A.J., Madsen, H., et al: ‘Integrating renewables in electricity markets: operational problems’ (Springer US, 2013).
        .
    28. 28)
      • S. Boyd , L. Vandenberghe . (2004)
        28. Boyd, S., Vandenberghe, L.: ‘Convex optimization’ (Cambridge University Press, 2004).
        .
    29. 29)
      • M.V. Pereira , S. Granville , M.H.C. Fampa .
        29. Pereira, M.V., Granville, S., Fampa, M.H.C., et al: ‘Strategic bidding under uncertainty: a binary expansion approach’, IEEE Trans. Power Syst., 2005, 20, (1), pp. 180188.
        . IEEE Trans. Power Syst. , 1 , 180 - 188
    30. 30)
      • M.D. Morris .
        30. Morris, M.D.: ‘Factorial sampling plans for preliminary computational experiments’, Technometrics, 1991, 33, (2), pp. 161174.
        . Technometrics , 2 , 161 - 174
    31. 31)
      • 31. ‘Power Systems Case Archive’, http://www.ee.washington.edu/research/pstca/pf30/pg_tca30bus.htm, accessed 14 October 2015.
        .
    32. 32)
      • 32. ‘Historical Market Data’, http://www.nordpoolspot.com/historical-market-data/, accessed 27 April 2015.
        .
    33. 33)
      • M. Shaaban , K. Bell .
        33. Shaaban, M., Bell, K.: ‘Assessment of tradable short-term transmission access rights to integrate renewable generation’. Proc. 44th Int. of Universities Power Engineering Conf., Glasgow, Scotland, September 2009, pp. 15.
        . Proc. 44th Int. of Universities Power Engineering Conf. , 1 - 5
    34. 34)
      • 34. ‘MATPOWER’, http://www.pserc.cornell.edu/matpower/, accessed 23 August 2016.
        .
    35. 35)
      • 35. ‘300 Bus Power Flow Test Case’, http://www2.ee.washington.edu/research/pstca/pf300/pg_tca300bus.htm, accessed 23 August 2016.
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.0041
Loading

Related content

content/journals/10.1049/iet-gtd.2016.0041
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address