access icon free Numerical approach to estimate the maximum power point of a photovoltaic array

This study presents a novel approach to estimate the maximum power point (MPP) of a photovoltaic (PV) array on an hourly basis using meteorological data. The estimation of MPP of a PV array based on its characteristic equation is done by using Levenberg–Marquardt (LM) method. The monthly averaged daily and hourly global solar irradiation during sunshine hours of Guwahati city is estimated by taking relative humidity and ambient temperature data using empirical relations. The actual and estimated maximum powers of a PV array of monthly averaged daily and hourly basis is calculated using MATLAB. It is demonstrated that each of the estimated maximum power of a PV array on an hourly basis is nearly equal to each of the actual maximum power. The MPP of a PV module estimated by the LM method is validated with the actual and experimental results. A comparative study of MPP of a PV module estimated from the proposed method with perturb-and-observe based on proportional–integral, genetic algorithm and Gauss–Seidel is performed. The performance of the proposed algorithm for estimation of MPP of a PV array ensures the accuracy and faster convergence.

Inspec keywords: integrated circuit modelling; maximum power point trackers; genetic algorithms; solar cell arrays; parameter estimation; iterative methods

Other keywords: genetic algorithm; perturb-and-observe method; PV array; partial shading conditions; photovoltaic array; monthly averaged daily global solar irradiation; MPP; hourly global solar irradiation; relative humidity; Matlab; single diode model PV module parameter estimation; characteristic equation; Guwahati city; ambient temperature data; meteorological data; Levenberg-Marquardt method; LM method; maximum power point tracking estimation; proportional-integral method; Gauss-Seidel method

Subjects: Photoelectric conversion; solar cells and arrays; Solar cells and arrays; Interpolation and function approximation (numerical analysis); Optimisation techniques; Semiconductor integrated circuit design, layout, modelling and testing; Numerical approximation and analysis

References

    1. 1)
      • 38. Goswami, D.Y., Kreith, F., Kreider, J.F.: ‘Principles of solar engineering’ (Taylor and Francis, 1999, 2nd edn.).
    2. 2)
    3. 3)
      • 40. Campbell, G.S., Norman, J.M.: ‘Introduction to environmental biophysics’ (Springer, 1998, 2nd edn.).
    4. 4)
    5. 5)
      • 6. Sera, D., Teodorescu, R., Rodriguez, P.: ‘PV panel model based on datasheet values’. IEEE Int. Symp. Industrial Electronics, Vigo, Spain, June 2007, pp. 23922396.
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
      • 26. Krishnamoorthy, C., Rajeev, S.: ‘Artificial intelligence and expert systems for engineers’ (CRC Press, Boca Raton, FL, USA, 1996).
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
      • 36. Walker, G.: ‘Evaluating MPPT converter topologies using a matlab PV model’, J. Electr. Electron. Eng., 2001, 21, (1), pp. 4955.
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
    41. 41)
    42. 42)
    43. 43)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2015.0923
Loading

Related content

content/journals/10.1049/iet-gtd.2015.0923
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading