access icon openaccess Parallel relaxation-based joint dynamic state estimation of large-scale power systems

Massive amounts of data generated in large-scale grids poses a formidable challenge for real-time monitoring of power systems. Dynamic state estimation which is a prerequisite for normal operation of power systems involves the time-constrained solution of a large set of equations which requires significant computational resources. In this study, an efficient and accurate relaxation-based parallel processing technique is proposed in the presence of phasor measurement units. A combination of different types of parallelism is used on both single and multiple graphic processing units to accelerate large-scale joint dynamic state estimation simulation. The estimation results for both generator and network states verify that proper massive-thread parallel programming makes the entire implementation scalable and efficient with high accuracy.

Inspec keywords: phasor measurement; parallel programming; graphics processing units; power system state estimation

Other keywords: large-scale joint dynamic state estimation simulation; graphic processing units; phasor measurement units; large-scale power systems; parallel relaxation-based joint dynamic state estimation; massive-thread parallel programming

Subjects: Power system measurement and metering

References

    1. 1)
    2. 2)
      • 45. NVIDIA: ‘CUSPARSE library’, NVIDIA Developer, February 2013.
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
      • 30. Li, Z., Donde, V.D., Tournier, J.C., et al: ‘On limitations of traditional multi-core and potential of many-core processing architectures for sparse linear solvers used in large-scale power system applications’. Proc. IEEE Power and Engineering Society, July 2011, pp. 18.
    17. 17)
      • 25. Happ, H.H., Pottle, C., Wirgau, K.A.: ‘An assessment of computer technology for large scale power system simulation’. Proc. Power Industry Computer Application Conf., May 1979, pp. 316324.
    18. 18)
    19. 19)
    20. 20)
      • 39. IEEE Std 421.5–2005: ‘IEEE recommended practice for excitation system models for power system stability studies’. Proc. IEEE Power Engineering Society, 2006, pp. 185.
    21. 21)
      • 31. White, J.K., Sangiovani-Vincentelli, A.L.: ‘Relaxation techniques for the simulation of VLSI circuits’ (Kluwer, Boston, MA, 1987).
    22. 22)
    23. 23)
      • 38. Kundur, P.: ‘Power system stability and control’ (McGraw-Hill, 1994).
    24. 24)
    25. 25)
    26. 26)
      • 6. Zhang, J., Welch, G., Bishop, G.: ‘LoDiM: a novel power system state estimation method with dynamic measurement selection’. Proc. IEEE Power and Engineering Society, July 2011, pp. 17.
    27. 27)
    28. 28)
      • 5. Korres, G.N., Contaxis, G.C.: ‘Application of a reduced model to a distributed state estimator’. Proc. IEEE Power and Engineering Society, 2000, vol. 2, pp. 9991004.
    29. 29)
    30. 30)
      • 47. IEEE Std C37.118.1: ‘IEEE standard for synchrophasor measurements for power systems’, December 2011, pp. 1–61.
    31. 31)
    32. 32)
    33. 33)
      • 10. Risso, M., Rubiales, A.J., Lotito, P.A.: ‘Hybrid method for power system state estimation’, IEEE Trans. Power Appl. Syst., 2015, 9, (7), pp. 636643.
    34. 34)
      • 34. Weng, Y., Li, Q., Negi, R., et al: ‘Distributed algorithm for SDP state estimation’. Proc. Innovative Smart Grid Technologies, February 2013, pp. 16.
    35. 35)
    36. 36)
    37. 37)
      • 21. Ghahremani, E., Kamwa, I.: ‘Dynamic state estimation in power system by applying the extended Kalman filter with unknown inputs to phasor measurements’, IEEE Trans. Power Syst., 2011, 11, (4), pp. 655661.
    38. 38)
      • 43. Leondes, C.T.: ‘Control and dynamic systems v42: analysis and control system’ (Academic press Inc., 1991).
    39. 39)
    40. 40)
    41. 41)
      • 40. Abur, A., Gómez-Expósito, A.: ‘Power system state estimation theory and implementation’ (Marcel Dekker, Inc., 2004) pp. 2025.
    42. 42)
      • 46. NVIDIA: ‘CUBLAS library’, NVIDIA Developer, August 2014.
    43. 43)
    44. 44)
    45. 45)
    46. 46)
      • 26. Brasch, F.M., Van Ness, J.E., Kang, S.C.: ‘Simulation of a multiprocessor network for power system problems’, IEEE Trans. Power Appl. Syst., 1982, 101, (2), pp. 295301.
    47. 47)
      • 33. Xie, L., Choi, D.H., Kar, S.: ‘Cooperative distributed state estimation: local observability relaxed’. Proc. IEEE Power and Engineering Society, July 2011, pp. 111.
    48. 48)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2015.0808
Loading

Related content

content/journals/10.1049/iet-gtd.2015.0808
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading