http://iet.metastore.ingenta.com
1887

Review of energy storage allocation in power distribution networks: applications, methods and future research

Review of energy storage allocation in power distribution networks: applications, methods and future research

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Changes in the electricity business environment, dictated mostly by the increasing integration of renewable energy sources characterised by variable and uncertain generation, create new challenges especially in the liberalised market environment. The role of energy storage systems (ESS) is recognised as a mean to provide additional system security, reliability and flexibility to respond to changes that are still difficult to accurately forecast. However, there are still open questions about benefits these units bring to the generation side, system operators and the consumers. This study provides a comprehensive overview of the current research on ESS allocation (ESS sizing and siting), giving a unique insight into issues and challenges of integrating ESS into distribution networks and thus giving framework guidelines for future ESS research.

References

    1. 1)
      • A. Zucker , T. Hinchliffe , A. Spisto . (2013)
        1. Zucker, A., Hinchliffe, T., Spisto, A.: ‘Assessing storage value in electricity markets a literature review’, 2013.
        .
    2. 2)
    3. 3)
    4. 4)
    5. 5)
      • J. Eyer , J. Iannucci , P. Butler . (2005)
        5. Eyer, J., Iannucci, J., Butler, P.: ‘Estimating electricity storage power rating and discharge duration for utility transmission and distribution deferral’, 2005.
        .
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
      • H. Le , T. Nguyen .
        10. Le, H., Nguyen, T.: ‘Sizing energy storage systems for wind power firming: an analytical approach and a cost-benefit analysis’. IEEE PES General Meeting, 2008, (II), pp. 18.
        . IEEE PES General Meeting , 1 - 8
    11. 11)
    12. 12)
    13. 13)
      • C. Venu , Y. Riffonneau , S. Bacha .
        13. Venu, C., Riffonneau, Y., Bacha, S., et al: ‘Battery Storage System sizing in distribution feeders with distributed photovoltaic systems’. 2009 IEEE Bucharest PowerTech, 2009, pp. 15.
        . 2009 IEEE Bucharest PowerTech , 1 - 5
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
      • G. Carpinelli , F. Mottola .
        18. Carpinelli, G., Mottola, F.: ‘Optimal allocation of dispersed generators, capacitors and distributed energy storage systems in distribution networks’. 2010 Proc. Int. Symp. on Modern Electric Power Systems (MEPS), 2010, pp. 16.
        . 2010 Proc. Int. Symp. on Modern Electric Power Systems (MEPS) , 1 - 6
    19. 19)
    20. 20)
      • T. Brekken , A. Yokochi , A. Jouanne .
        20. Brekken, T., Yokochi, A., Jouanne, A., et al: ‘Optimal energy storage sizing and control for wind power applications’, IEEE Trans. Sustain. Energy, 2011, 2, (1), pp. 6977.
        . IEEE Trans. Sustain. Energy , 1 , 69 - 77
    21. 21)
    22. 22)
      • S. Backhaus , M. Chertkov , K. Dvijotham .
        22. Backhaus, S., Chertkov, M., Dvijotham, K.: ‘Operations-based planning for placement and sizing of energy storage in a grid with a high penetration of renewables’, 2011, 98195.
        .
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
      • S. Mohammadi , B. Mozafari , S. Solymani .
        37. Mohammadi, S., Mozafari, B., Solymani, S., et al: ‘Stochastic scenario-based model and investigating size of energy storages for PEM-fuel cell unit commitment of micro-grid considering profitable strategies’, IET Gener. Transm. Distrib., 2014, (January 2013), pp. 116.
        . IET Gener. Transm. Distrib. , 1 - 16
    38. 38)
    39. 39)
    40. 40)
    41. 41)
    42. 42)
    43. 43)
      • F. Oldewurtel , T. Borsche , M. Bucher .
        43. Oldewurtel, F., Borsche, T., Bucher, M., et al: ‘A Framework for and assessment of demand response and energy storage in power systems A’. 2013 IREP Symp., 2013, pp. 124.
        . 2013 IREP Symp. , 1 - 24
    44. 44)
      • (2011)
        44. IEA: ‘Technology roadmap energy storage’, 2011.
        .
    45. 45)
    46. 46)
    47. 47)
    48. 48)
    49. 49)
    50. 50)
    51. 51)
    52. 52)
    53. 53)
      • P. Denholm , J. Jorgenson , T. Jenkin . (2013)
        53. Denholm, P., Jorgenson, J., Jenkin, T., et al: ‘The value of energy storage for grid applications’, 2013.
        .
    54. 54)
    55. 55)
    56. 56)
      • A. Tuohy , M. O'Malley .
        56. Tuohy, A., O'Malley, M.: ‘Impact of pumped storage on systems with increasing wind penetration’. Proc. IEEE Power and Energy Society General Meeting’, 2009.
        . Proc. IEEE Power and Energy Society General Meeting’
    57. 57)
      • Y. Wen , C. Guo , H. Pandzic .
        57. Wen, Y., Guo, C., Pandzic, H., et al: ‘Enhanced security-constrained unit commitment with emerging utility-scale energy storage’, IEEE Trans. Power Syst., 2015, pp. 111.
        . IEEE Trans. Power Syst. , 1 - 11
    58. 58)
    59. 59)
      • H. Pandzic , Y. Wang , T. Qiu .
        59. Pandzic, H., Wang, Y., Qiu, T., et al: ‘Near-optimal method for siting and sizing of distributed storage in a transmission network’, IEEE Trans. Power Syst., 2014, pp. 113.
        . IEEE Trans. Power Syst. , 1 - 13
    60. 60)
    61. 61)
    62. 62)
    63. 63)
    64. 64)
    65. 65)
    66. 66)
    67. 67)
    68. 68)
    69. 69)
    70. 70)
    71. 71)
    72. 72)
    73. 73)
    74. 74)
      • M. Zidar , T. Capuder , P.S. Georgilakis . (2014)
        74. Zidar, M., Capuder, T., Georgilakis, P.S., et al: ‘Convex AC optimal power flow method for definition of size and location of battery storage systems in the distribution grid’, in Ban, M. (Ed.): ‘Proc. of the Ninth Conf. on Sustainable Development of Energy, Water and Environment System – SDEWES’ (University of Zagreb Faculty of Mechanical Engineering and Naval Architecture, 2014), pp. 123.
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2015.0447
Loading

Related content

content/journals/10.1049/iet-gtd.2015.0447
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address