access icon free Grid synchronisation technique without using trigonometric functions for accurate estimation of fundamental voltage parameters

This study proposes a single-phase grid voltage synchronisation technique combining a quadrature signal generator and a frequency estimator to avoid the use of the computationally demanding trigonometric functions of a conventional phase-locked loop. The quadrature signal generator consists of an anticonjugate decomposition process and a cascaded delayed signal cancellation (ACDSC) strategy. The technique can provide accurate estimation of the fundamental voltage amplitude, frequency and phase angle, and can also reject the negative effects caused by the presence of DC offset and harmonics. When compared with a phase-locked loop based on the ACDSC, the proposed technique avoids the evaluation of the trigonometric functions, removes the phase loop, thus does not require tuning of loop filter, and also provides comparable estimation accuracy and dynamics. Simulation and experimental results are provided to verify the performance of the proposed technique.

Inspec keywords: phase locked loops; amplitude estimation; signal generators; phase estimation; distributed power generation; power grids; synchronisation; power system harmonics; frequency estimation

Other keywords: phase-locked loop; harmonics; fundamental voltage parameter estimation; a cascaded delayed signal cancellation strategy; ACDSC strategy; fundamental voltage amplitude estimation; frequency estimator; DC offset; fundamental frequency estimation; anti conjugate decomposition process; quadrature signal generator; single-phase grid voltage synchronisation technique; fundamental phase angle estimation; distributed generation

Subjects: Other topics in statistics; Power supply quality and harmonics; Signal generators; Distributed power generation

References

    1. 1)
      • 24. Golestan, S., Monfared, M., Freijedo, F.D., Guerrero, J.M.: ‘Dynamics assessment of advanced single-phase PLL structures’, IEEE Trans. Ind. Electr., 2013, 60, (6), pp. 21672177.
    2. 2)
      • 41. Nascimento, P.S.B., de Souza, H.E.P., Neves, F.A.S., Limongi, L.R.: ‘FPGA implementation of the generalized delayed signal cancelation-Phase locked loop method for detecting harmonic sequence components in three-phase signals’, IEEE Trans. Ind. Electr., 2013, 60, (2), pp. 645658.
    3. 3)
      • 31. Wang, Y.F., Li, Y.W.: ‘A grid fundamental and harmonic component detection method for single-phase systems’, IEEE Trans. Power Electr., 2013, 28, (5), pp. 22042213.
    4. 4)
      • 39. Wang, Y.F., Li, Y.W.: ‘Three-phase cascaded delayed signal cancellation PLL for fast selective harmonic detection’, IEEE Trans. Ind. Electr., 2013, 60, (4), pp. 14521463.
    5. 5)
      • 44. IEC Standard 61000-4-13: ‘Testing and measurement techniques-Harmonics and interharmonics including mains signaling at AC power port, low frequency immunity test’, 2002.
    6. 6)
      • 6. IEC Standard 61727: ‘Photovoltaic (PV) systems-Characteristics of the utility interface’, 2004.
    7. 7)
      • 37. IEC Standard 61000-4-30: ‘Testing and measurement techniques – Power quality measurement methods’, 2003.
    8. 8)
      • 15. Chudamani, R., Vasudevan, K., Ramalingam, C.S.: ‘Real-time estimation of power system frequency using nonlinear least squares’, IEEE Trans. Power Deliv., 2009, 24, (3), pp. 10211028.
    9. 9)
      • 2. Eftekharnejad, S., Vittal, V., Heydt, G.T., Keel, B., Loehr, J.: ‘Impact of increased penetration of photovoltaic generation on power systems’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 893901.
    10. 10)
      • 5. Bae, Y., Vu, T.-K., Kim, R.-Y.: ‘Implemental control strategy for grid stabilization of grid-connected PV system based on German grid code in symmetrical low-to-medium voltage network’, IEEE Trans. Energy Convers., 2013, 28, (3), pp. 619631.
    11. 11)
      • 7. Cupertino, F., Lavopa, E., Zanchetta, P., Sumner, M., Salvatore, L.: ‘Running DFT-based PLL algorithm for frequency, phase, and amplitude tracking in aircraft electrical systems’, IEEE Trans. Ind. Electron., 2011, 58, (3), pp. 10271035.
    12. 12)
      • 28. Karimi-Ghartemani, M., Khajehoddin, S.A., Jain, P.K., Bakhshai, A., Mojiri, M.: ‘Addressing DC component in PLL and notch filter algorithms’, IEEE Trans. Power Electr., 2012, 27, (1), pp. 7886.
    13. 13)
      • 14. Sadinezhad, I., Agelidis, V.G.: ‘Frequency adaptive least-squares-Kalman technique for real-time voltage envelope and flicker estimation’, IEEE Trans. Ind. Electron., 2012, 59, (8), pp. 33303341.
    14. 14)
      • 25. Ciobotaru, M., Agelidis, V.G., Teodorescu, R., Blaabjerg, F.: ‘Accurate and less-disturbing active antiislanding method based on PLL for grid-connected converters’, IEEE Trans. Power Electr., 2010, 25, (6), pp. 15761584.
    15. 15)
      • 27. Ciobotaru, M., Teodorescu, R., Agelidis, V.G.: ‘Offset rejection for PLL based synchronization in grid-connected converters’. Proc. 23rd Annual IEEE Application. Power Elect. Conf. Expo. (APEC), 2008, pp. 16111617.
    16. 16)
      • 34. Das, D., Mukhopadhyaya, K., Sinha, B.P.: ‘Implementation of four common functions on an LNS co-processor’, IEEE Trans. Comput., 1995, 44, (1), pp. 155161.
    17. 17)
      • 43. Girones, X., Julia, C., Puig, D.: ‘Full quadrant approximations for the arctangent function’, IEEE Signal Proc. Mag., 2013, 30, (1), pp. 130135.
    18. 18)
      • 16. Chen, C.I., Chang, G.W., Hong, R.C., Li, H.M.: ‘Extended real model of Kalman filter for time-varying harmonics estimation’, IEEE Trans. Power Deliv., 2010, 25, (1), pp. 1726.
    19. 19)
      • 12. Chen, C.-I., Chen, Y.-C.: ‘Comparative study of harmonic and interharmonic estimation methods for stationary and time-varying signals’, IEEE Trans. Ind. Electron., 2014, 61, (1), pp. 397404.
    20. 20)
      • 35. da Silva, C.H., Pereira, R.R., da Silva, L.E.B., Lambert-Torres, G., Bose, B.K., Ahn, S.U.: ‘A digital PLL scheme for three-phase system using modified synchronous reference frame’, IEEE Trans. Ind. Electr., 2010, 57, (11), pp. 38143821.
    21. 21)
      • 36. Reza, M.S., Ciobotaru, M., Agelidis, V.G.: ‘A frequency adaptive technique for accurate estimation of single-phase grid voltage fundamental parameters’. Proc. 39th Annual Conf. IEEE Industry Electronics Soceity (IECON2013), 2013, pp. 64086413.
    22. 22)
      • 4. Kim, S.-T., Kang, B.-K., Bae, S.-H., Park, J.-W.: ‘Application of SMES and grid code compliance to wind/photovoltaic generation system’, IEEE Trans. Appl. Supercond., 2013, 23, (3).
    23. 23)
      • 9. Kamwa, I., Samantaray, S.R., Joos, G.: ‘Wide frequency range adaptive phasor and frequency PMU algorithms’, IEEE Trans. Smart Grid, 2014, 5, (2), pp. 569579.
    24. 24)
      • 29. de Carvalho, J.R., Duque, C.A., Ribeiro, M.V., Cerqueira, A.S., Baldwin, T.L., Ribeiro, P.F.: ‘A PLL-based multirate structure for time-varying power systems harmonic/interharmonic estimation’, IEEE Trans. Power Deliv., 2009, 24, (4), pp. 17891800.
    25. 25)
      • 40. Bueno, E.J., Hernandez, A., Rodriguez, F.J., Giron, C., Mateos, R., Cobreces, S.: ‘A DSP- and FPGA-based industrial control with high-speed communication interfaces for grid converters applied to distributed power generation systems’, IEEE Trans. Ind. Electr., 2009, 56, (3), pp. 654669.
    26. 26)
      • 20. Tan, J., Kyriakopoulos, N.: ‘Implementation of a tracking Kalman filter on a digital signal processor’, IEEE Trans. Ind. Electr., 1988, 35, (1), pp. 126134.
    27. 27)
      • 19. Chakir, M., Kamwa, I., Le Huy, H.: ‘Extended C37.118.1 PMU algorithms for joint tracking of fundamental and harmonic phasors in stressed power systems and microgrids’, IEEE Trans. Power Deliv., 2014, 29, (3), pp. 14651480.
    28. 28)
      • 3. Teodorescu, R., Liserre, M., Rodríguez, P.: ‘Grid converters for photovoltaic and wind power systems’ (John Wiley & Sons, Ltd, Chichester, UK, 2011).
    29. 29)
      • 38. Wang, Y.F., Li, Y.W.: ‘Analysis and digital implementation of cascaded delayed-signal-cancellation PLL’, IEEE Trans. Power Electr., 2011, 26, (4), pp. 10671080.
    30. 30)
      • 23. Karimi-Ghartemani, M., Karimi, H., Iravani, M.R.: ‘A magnitude/phase-locked loop system based on estimation of frequency and in-phase/quadrature-phase amplitudes’, IEEE Trans. Ind. Electron., 2004, 51, (2), pp. 511517.
    31. 31)
      • 42. Roncero-Sanchez, P., del Toro Garcia, X., Torres, A.P., Feliu, V.: ‘Robust frequency-estimation method for distorted and imbalanced three-phase systems using discrete filters’, IEEE Trans. Power Electr., 2011, 26, (4), pp. 10891101.
    32. 32)
      • 30. Karimi-Ghartemani, M., Khajehoddin, S.A., Jain, P.K., Bakhshai, A.: ‘Derivation and design of in-loop filters in phase-locked loop systems’, IEEE Trans. Instrum. Meas., 2012, 61, (4), pp. 930940.
    33. 33)
      • 18. Kamwa, I., Grondin, R., McNabb, D.: ‘On-line tracking of changing harmonics in stressed power systems: application to Hydro-Quebec network’, IEEE Trans. Power Deliv., 1996, 11, (4), pp. 20202027.
    34. 34)
      • 17. Kamwa, I., Samantaray, S.R., Joos, G.: ‘Compliance analysis of PMU algorithms and devices for wide-area stabilizing control of large power systems’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 17661778.
    35. 35)
      • 10. Darwish, H.A., Fikri, M.: ‘Practical considerations for recursive DFT implementation in numerical relays’, IEEE Trans. Power Deliv., 2007, 22, (1), pp. 4249.
    36. 36)
      • 1. Blaabjerg, F., Teodorescu, R., Liserre, M., Timbus, A.V.: ‘Overview of control and grid synchronization for distributed power generation systems’, IEEE Trans. Ind. Electr., 2006, 53, (5), pp. 13981409.
    37. 37)
      • 32. Wang, Y.F., Li, Y.W.: ‘Grid synchronization PLL based on cascaded delayed signal cancellation’, IEEE Trans. Power Electr., 2011, 26, (7), pp. 19871997.
    38. 38)
      • 26. Roscoe, A.J., Burt, G.M., McDonald, J.R.: ‘Frequency and fundamental signal measurement algorithms for distributed control and protection applications’, IET Gener. Trans. Dist., 2009, 3, (5), pp. 485495.
    39. 39)
      • 22. Rodriguez, P., Luna, A., Candela, I., Mujal, R., Teodorescu, R., Blaabjerg, F.: ‘Multiresonant frequency-locked loop for grid synchronization of power converters under distorted grid conditions’, IEEE Trans. Ind. Electr., 2011, 58, (1), pp. 127138.
    40. 40)
      • 21. Rodriguez, P., Luna, A., Munoz-Aguilar, R.S., Etxeberria-Otadui, I., Teodorescu, R., Blaabjerg, F.: ‘A stationary reference frame grid synchronization system for three-phase grid-connected power converters under adverse grid conditions’, IEEE Trans. Power Electr., 2012, 27, (1), pp. 99112.
    41. 41)
      • 8. Kamwa, I., Leclerc, M., McNabb, D.: ‘Performance of demodulation-based frequency measurement algorithms used in typical PMUs’, IEEE Trans. Power Deliv., 2004, 19, (2), pp. 505514.
    42. 42)
      • 13. Zygarlicki, J., Zygarlicka, M., Mroczka, J., Latawiec, K.J.: ‘A reduced Prony's method in power-quality analysis-parameters selection’, IEEE Trans. Power Deliv., 2010, 25, (2), pp. 979986.
    43. 43)
      • 11. Leonowicz, Z., Lobos, T., Rezmer, J.: ‘Advanced spectrum estimation methods for signal analysis in power electronics’, IEEE Trans. Ind. Electron., 2003, 50, (3), pp. 514519.
    44. 44)
      • 33. Paliouras, V., Karagianni, K., Stouraitis, T.: ‘A floating-point processor for fast and accurate sine/cosine evaluation’, IEEE Trans. Circular Syst. II: Analog Digital Signal Proc., 2000, 47, (5), pp. 441451.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2014.0814
Loading

Related content

content/journals/10.1049/iet-gtd.2014.0814
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading