Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Incorporating deadbeat and low-frequency harmonic elimination in modular multilevel converters

This study shows that modular multilevel converter (MMC) can implement deadbeat control and harmonic elimination together. MMC, under single-phase deadbeat control, tracks the current reference exclusively, so that it is: (i) safe from large destructive currents of ac faults; and (ii) free from the odd harmonics generated by the non-linearities of MMC. As a deadbeat control cannot filter even harmonics on the dc-side, harmonic elimination has to be done by joint feedback–feedforward methods. However, the cost saving from capacitor size reduction, made possible by the harmonic elimination, comes to naught when large ac fault currents charge the capacitors to voltage levels destructive to insulated-gate bipolar transistors. Deadbeat, in preventing the flow of large fault currents, safeguards capacitor size reduction made possible by the harmonic elimination methods. Redundant protection by the methods enhances reliability. Claims are validated by simulations by SIMULINK of MATLAB.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
      • 18. Angquist, A.L., Nee, H.P.: ‘On dynamics and voltage control of the modular multilevel converter’. Proc. Eur. Conf. Power Electron. Appl., Barcelona, Spain, 2009, pp. 110.
    5. 5)
    6. 6)
    7. 7)
      • 41. Liu, X.-M., Zhang, Q., Zhao, Q., Yao, Z.-Q.: ‘Research on deadbeat control strategy of modular multilevel converter’. Int. Conf. on Transportation, Mechanical, and Electrical Engineering (TMEE), Changchun, China, 2011, pp. 621624.
    8. 8)
      • 17. Cherix, N., Vasiladiotis, M., Rufer, A.: ‘Functional modeling and energetic macroscopic representation of modular multilevel converters’. Power Electronics and Motion Control Conf., Novi Sad, Serbia, 2012, pp. 131138.
    9. 9)
    10. 10)
      • 8. Perez, M.A., Lizana, F.R., Rodriguez, J.: ‘Decoupled current control of modular multilevel converter for HVDC applications’. IEEE Symp. on Industrial Electronics, Hangzhou, China, 2012, pp. 19791984.
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • 42. Lesnicar, A., Marquardt, R.: ‘An innovative modular multilevel converter topology suitable for a wide power range’. Proc. Power Tech Conf., Bologna, Italy, 2003.
    15. 15)
    16. 16)
    17. 17)
      • 1. Allebrod, S., Hamerski, R., Marquardt, R.: ‘New transformerless, scalable modular multilevel converters for HVDC-transmission’. Proc. Conf. Power Electron. Spec., Rhodes, Greece, 2008, pp. 174179.
    18. 18)
    19. 19)
    20. 20)
      • 2. Westerweller, T., Friedrich, K., Armonies, U., Orini, A., Parquet, D., When, S.: ‘Trans bay cable – world's first HVDC system using multilevel voltage-sourced converter’. Proc. CIGRE Conf. Power Syst., Paris, 2010, pp. 16.
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
      • 44. Carter, B.: ‘Application notes, texas instruments incorporated’. Application Report, SLOA096, 2001.
    30. 30)
    31. 31)
    32. 32)
      • 9. Pereira, M., Zenkner, A., Claus, M.: ‘Characteristics and benefits of modular multilevel converters for FACTS’. CIGRE, 2010, B4_104_2010.
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
      • 33. Buso, S., Malesani, L., Mattavelli, P.: ‘Comparison of current control techniques for active filter applications’, IEEE Trans. Power Electron., 1998, 45, (5), pp. 722729.
    41. 41)
    42. 42)
      • 40. Hu, J.: ‘Deatbeat controlled PWM converter’. M. Eng. Thesis, McGill University, Canada, 1999.
    43. 43)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2014.0429
Loading

Related content

content/journals/10.1049/iet-gtd.2014.0429
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address