access icon free DC flashover criterion and discharge elongation mechanism in an air–electrolyte interval

For a better understanding of the flashover criterion and discharge elongation mechanism, an experimental study was carried out in order to find flashover voltage and current according to the pollution amount. A simulation study was then carried out to assess the electric field distribution in the vicinity of the discharge that corresponds to the flashover experimental values. The obtained results show that the average value of the electrical field in the flashover gap discharge-electrolyte is high compared with the average value obtained in works devoted to the study of air breakdown in the vicinity of an electrical discharge. The average field value of these two systems is lower than the average field value in a metal pin–water system. This result confirms that the presence of an electric discharge weakened the dielectric rigidity of the air. The maximum values of the electrical field in the vicinity of the discharge are high compared with the value of the disruptive field of air at atmospheric pressure. Flashover is, therefore, possible if the electric field distribution along the leakage distance is sufficient for discharge elongation by a progressive breakdown of the air, by Streamer or Townsend mechanism, between the discharge and the electrolyte.

Inspec keywords: air pollution; Townsend discharge; flashover; air gaps; electrolytes; electric fields

Other keywords: DC flashover criterion; pollution layer; air breakdown; critical current; gap discharge electrolyte; polarity; dielectric rigidity; laboratory circular model; electrical discharge; electric field distribution; Streamer mechanism; metal pin–water electrode system; leakage distance; critical voltage; Townsend mechanism; progressive ordinary breakdown; atmospheric pressure; air-electrolyte interval; discharge elongation mechanism

Subjects: Protection apparatus; Dielectric breakdown and discharges; Gaseous insulation, breakdown and discharges; Gas discharges

References

    1. 1)
    2. 2)
      • 18. Wilkins, R.: ‘Flashover voltage of high voltage insulators with uniform surface pollution films’, Proc. IEE, 1969, 116, (3), pp. 457465.
    3. 3)
      • 19. Flazi, S., Boukhennoufa, N., Hadi, H., Taleb, F.: ‘The criterion of DC flashover on a circular sector models’. IEEE Conf. Electrical Insulation and Dielectric Phenomena (IEEE/CEIDP'2003), Albuquerque, New Mexico, USA, 19–22 October 2003.
    4. 4)
      • 17. Heskeith, S.: ‘General criterion for the prediction of pollution flashover’, Proc. IEE, 1967, 114, (4), pp. 531532.
    5. 5)
    6. 6)
    7. 7)
      • 4. Olsem, R.G., Furumasu, B.C., Hartmann, D.P.: ‘Contamination mechanism for H.V.D.C. insulators’, A77 035–9, recommended and approved by the IEEE made available for printing, November1976.
    8. 8)
      • 27. Flazi, S., Boukhennoufa, N., Ouis, A.: ‘Influence of leakage current distribution and pollution resistivity on DC flashover’. International Conference on Gas Discharges and their Applications (GD'04), Toulouse/France, September 2004.
    9. 9)
      • 34. Raizer, Y.P.: ‘Gaz discharge physics’ (Springer-Verlag, Berlin Heidelberg, Germany, 1991).
    10. 10)
    11. 11)
      • 3. Rizk, F.A.M.: ‘Electrical resistance of an insulating surface under artificial rain’, Proc. IEE, 1974, 121, (2), pp. 154160.
    12. 12)
      • 29. www.Comsol.com/Comsol-multiphysics.
    13. 13)
    14. 14)
    15. 15)
      • 26. Ouis, A., Naoui, N., Flazi, S., Hadi, H.: ‘La rupture de l'air au voisinage d'une décharge électrique’. Fifth Int. Conf. Electrical Engineering, Batna/Algeria, 27–29 October 2008.
    16. 16)
      • 7. Nasser, E.: ‘Contamination flashover of outdoor insulation’, ETZ-A Bd. 93 H.G., 1972, pp. 321325.
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
      • 31. Wilkins, R., Albaghdadi, A.J.: ‘Arc Propagation along an electrolyte surface’, Proc. IEE, 1971, 118, (12), pp. 18861892.
    22. 22)
      • 28. Ouis, A., Flazi, S., Hadi, H.: ‘Air breakdown in the vicinity of flashover discharge’, JEE J. Electr. Eng., 2013, 13, (4), pp. 2936.
    23. 23)
      • 33. Labadie, J.C.: ‘Etude de la validité du modèle électrique du contournement des isolateurs haute tension pollués’. Thèse, Université Paul Sabatier, Toulouse, 1987.
    24. 24)
      • 25. Flazi, S., Talhi, M., Hadi, H.: ‘Factors affecting the breakdown of air gap between a discharge and ice-plane or wet-plane surfaces’. Eleventh Int. Conf. Atmospheric Icing of Structure (IWAS'05), Montreal/Canada, 12–16 June 2005.
    25. 25)
      • 6. Salthous, E.C.: ‘Dry-Band formation and flashover in uniform field gaps’, Proc. IEE, 1971, 118, (3/4), p. 360.
    26. 26)
      • 2. Holte, K.C., Kim, J.H., Cheng, T.C., Kim, Y.B., Nitta, Y.: ‘Dependence of flashover voltage on the chemical composition of multi-component insulator surface contamination’, IEEE, 1976, PAS-95, (2), pp. 603609.
    27. 27)
      • 11. Flazi, S.: ‘Etude du contournement électrique des isolateurs haute tension pollues critère d’élongation de la décharge et dynamique du phénomène’. Thèse de docteur d’état science, Université Paul Sabatier, Toulouse, 1987.
    28. 28)
      • 5. Nasser, E.: ‘Some physical properties of electrical discharge on contaminated surface’, IEEE, 1968, PAS-87, (4), pp. 957963.
    29. 29)
      • 32. King, D.J.: ‘Measurement of the properties of arcs near electrolyte surface’. Thèse, M.I.T, 1975.
    30. 30)
    31. 31)
      • 10. Mahi, D., Huraux, C.: ‘Surface flashover of a channel filled with an electrolyte’. IEEE Conf. Electrical Insulation and Dielectric Phenomena (CEIDP), V.B. Colombia, Canada, 15–18 October 2000.
    32. 32)
    33. 33)
      • 14. Hampton, B.F.: ‘Flashover mechanism of polluted insulation’, Proc IEE, 1964, III, (5), pp. 985990.
    34. 34)
      • 1. Woodson, H.H., Mc Eloroy, A.J.: ‘Insulators with contaminated surfaces, Part III: modeling of dry zone formation’, IEEE, 1970, PAS-89, (8), pp. 18681876.
    35. 35)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2014.0405
Loading

Related content

content/journals/10.1049/iet-gtd.2014.0405
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading