access icon free Trajectory sensitivity analysis on the equivalent one-machine-infinite-bus of multi-machine systems for preventive transient stability control

A new approach for power system transient stability preventive control is proposed by performing trajectory sensitivity analysis on the one-machine-infinite-bus (OMIB) equivalence of multi-machine systems. Exact instability time/angle are determined from the equivalent OMIB power–angle curve; the trajectory sensitivity is calculated at the instability time and the transient stability of the multi-machine system is controlled by constraining the OMIB's angle excursion at the instability time to that of the critical OMIB which corresponds to the marginally stable condition of the system. The required preventive control action (generation rescheduling) can be efficiently solved via a linear programming model with the OMIB trajectory sensitivities-based constraints. Simulation results on the New England 10-machine 39-bus system and a 285-machine and 1648-bus system validate its effectiveness and superiority over previous trajectory sensitivity applications to this problem.

Inspec keywords: preventive maintenance; power generation scheduling; sensitivity analysis; power generation control; linear programming; power system transient stability; trajectory control

Other keywords: linear programming model; exact instability angle determination; one-machine-infinite-bus equivalence; OMIB trajectory sensitivities-based constraints; power system operation; equivalent OMIB power-angle curve; generation rescheduling; exact instability time determination; trajectory sensitivity analysis; power system transient stability preventive control; New England 10-machine 39-bus system; angle excursion; multimachine systems

Subjects: Plant engineering, maintenance and safety; Optimisation techniques; Control of electric power systems; Power system control; Optimisation techniques; Stability in control theory; Control system analysis and synthesis methods

References

    1. 1)
      • 12. Chen, L., Tada, Y., Okamoto, H., Tanabe, R., Ono, A.: ‘Optimal operation solutions of power systems with transient stability constraints’, IEEE Trans. Circuits Syst. I, 2001, 48, (3), pp. 327339.
    2. 2)
      • 1. Andersson, G., Donalek, P., Farmer, R., et al: ‘Causes of the 2003 major grid blackouts in North America and Europe, and recommended means to improve system dynamic performance’, IEEE Trans. Power Syst., 2005, 20, (4), pp. 19221928.
    3. 3)
      • 5. Kundur, P.: ‘Power system stability and control’ (McGraw-Hill, New York, 1994).
    4. 4)
      • 21. Hou, G., Vittal, V.: ‘Determination of transient stability constrained interface real power flow limit using trajectory sensitivity approach’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 21562163.
    5. 5)
      • 2. Kundur, P., Paserba, J., Ajjarapu, V., et al: ‘Definition and classification of power system stability’, IEEE Trans. Power Syst., 2004, 19, (2), pp. 13871401.
    6. 6)
      • 26. Xue, Y.: ‘Fast analysis of stability using EEAC and simulation technologies’. Proc. 1998 Int. Conf. Power System Tech(POWERCON), Beijing, China, 1998.
    7. 7)
      • 25. Xue, Y., Pavella, M.: ‘Critical cluster identification in transient stability studies’, IET Gener. Trans. Distrib., 1993, 140, (6), pp. 481489.
    8. 8)
      • 23. Hiskens, I.A., Pai, M.A.: ‘Trajectory sensitivity analysis of hybrid systems’, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 2000, 47, (2), pp. 204220.
    9. 9)
      • 27. Siemens PTI: PSS/E 33.0 Program Application Guide, May 2011.
    10. 10)
      • 30. Xu, Y., Dong, Z.Y., Zhang, R., Wong, K.P., Lai, M.Y.: ‘Solving preventive-corrective SCOPF by a hybrid computational strategy’, IEEE Trans. Power Syst., 2014, 29, (3), pp. 13451355.
    11. 11)
      • 9. Pavella, M., Ernst, D., Ruiz-Vega, D.: ‘Transient stability of power systems: a unified approach to assessment and control’ (Kluwer, Norwell, MA, 2000).
    12. 12)
      • 18. Xue, Y., Li, W., Hill, D.J.: ‘Optimization of transient stability control part-I: for cases with identical unstable modes’, Int. J. Control, Auto. Syst., 2005, 3, (2), pp. 334340.
    13. 13)
      • 22. Tang, L., McCalley, J.D.: ‘An efficient transient stability constrained optimal power flow using trajectory sensitivity’, Proc. North American Power Symp. (NAPS), 2012.
    14. 14)
      • 7. Xue, Y., Van Cutsem, T., Pavella, M.: ‘A simple direct method for fast transient stability assessment of large power systems’, IEEE Trans. Power Syst., 1988, 3, (2), pp. 400412.
    15. 15)
      • 29. MATLAB Optimization Toolbox: MathWorks [On-line]. Available at http://www.mathworks.com.au/products/optimization/.
    16. 16)
      • 4. Glavic, M., Ernst, D., Ruiz-Vega, D., Wehenkel, L.: ‘E-SIME – a method for transient stability closed-loop emergency control: achievements and prospects’. Proc. 2007 iREP Symp. on Bulk Power System Dynamics and Control, Charleston, SC, US, August 2007.
    17. 17)
      • 17. Ruiz-Vega, D., Pavella, M.: ‘A comprehensive approach to transient stability control: part I – near optimal preventive control’, IEEE Trans. Power Syst., 2003, 18, pp. 14461453.
    18. 18)
      • 15. Xu, Y., Dong, Z.Y., Xu, Z., Zhang, R., Wong, K.P.: ‘Power system transient stability-constrained optimal power flow: a comprehensive review’. Proc. IEEE PES General Meeting, San Diego, CA, USA, July 2012.
    19. 19)
      • 11. Gan, D., Thomas, R.J., Zimmerman, R.D.: ‘Stability-constrained optimal power flow’, IEEE Trans. Power Syst., 2000, 15, (2), pp. 535540.
    20. 20)
      • 24. Hiskens, I.A., Alseddiqui, J.: ‘Sensitivity, approximation, and uncertainty in power system dynamic simulation’, IEEE Trans. Power Syst., 2006, 21, (4), pp. 18081820.
    21. 21)
      • 10. Dong, Z.Y., Xu, Y., Zhang, P., Wong, K.P.: ‘Using intelligent system to assess an electric power system's real-time stability’, IEEE Intell. Syst. Mag., 2013, 28, (4), pp. 6066.
    22. 22)
      • 16. Nguyen, T., Pai, M.A.: ‘Dynamic security-constrained rescheduling of power systems using trajectory sensitivities’, IEEE Trans. Power Syst., 2003, 18, (2), pp. 848854.
    23. 23)
      • 3. Ruiz-Vega, D., Pavella, M.: ‘A comprehensive approach to transient stability control: part II – open loop emergency control’, IEEE Trans. Power Syst., 2003, 18, pp. 14541460.
    24. 24)
      • 6. Pai, M.A.: ‘Energy function analysis for power system stability’ (Kluwer, Norwell, MA, 1989).
    25. 25)
      • 19. Xu, Y., Dong, Z.Y., Guan, L., Zhang, R., Wong, K.P., Luo, F.: ‘Preventive dynamic security control of power systems based on pattern discovery technique’, IEEE Trans. Power Syst., 2012, 27, (3), pp. 12361244.
    26. 26)
      • 13. Pizano-Martinez, A., Fuerte-Esquivel, C.R., Ruiz-Vega, D.: ‘Global transient stability-constrained optimal power flow using an OMIB reference trajectory’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 392403.
    27. 27)
      • 8. Xue, Y.: ‘Integrated extended equal area criterion – theory and application’. Proc. Fifth Symp. Specialists in Electric Operational and Expansion Planning, Recife, Brazil, 1996.
    28. 28)
      • 14. Xu, Y., Dong, Z.Y., Meng, K., Zhao, J.H., Wong, K.P.: ‘A hybrid method for transient stability constrained-optimal power flow computation’, IEEE Trans. Power Syst., 2012, 27, (4), pp. 17691777.
    29. 29)
      • 20. Hou, G., Vittal, V.: ‘Cluster computing based trajectory-sensitivity analysis application to the WECC system’, IEEE Trans. Power Syst., 2012, 27, (1), pp. 502509.
    30. 30)
      • 28. Meng, K., Dong, Z.Y., Wong, K.P., Xu, Y., Luo, F.: ‘Speed-up the computing efficiency of PSS/E-based power system transient stability simulations’, IET Gener. Transm. Distrib., 2010, 4, pp. 652661.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2014.0263
Loading

Related content

content/journals/10.1049/iet-gtd.2014.0263
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading