access icon free Reactive power planning under conditional-value-at-risk assessment using chance-constrained optimisation

This study presents a risk-assessment approach to the reactive power planning problem. Chance-constrained programming is used to model the random equivalent availability of existing reactive power sources for a given confidence level. Load shedding because of random equivalent availability of those reactive power sources is implemented through conditional-value-at-risk. Tap settings of under-load tap-changing transformers are considered as integer variables. Active and reactive demands are considered as probability distribution functions. The proposed mathematical formulation is a two-stage stochastic, multi-period mixed-integer convex model. The tradeoff between risk mitigation and investment cost minimisation is analysed. The proposed methodology is applied to the CIGRE-32 electric power system, using the optimisation solver CPLEX in AMPL.

Inspec keywords: load shedding; reactive power; power transformers; risk management; investment; minimisation

Other keywords: CIGRE-32 electric power system; conditional-value-at-risk assessment; risk mitigation; chance-constrained optimisation; confidence level; load shedding; reactive power sources; mathematical formulation; two-stage stochastic model; integer variables; reactive power planning; under-load tap-changing transformers; investment cost minimisation; probability distribution functions; multiperiod mixed-integer convex model; chance-constrained programming; AMPL; reactive demands; random equivalent availability; optimisation solver CPLEX

Subjects: Power system planning and layout; Power system management, operation and economics; Transformers and reactors; Optimisation techniques

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
      • 28. Pflug, G.C., Römisch, W.: ‘Modeling, measuring and managing risk’ (World Scientific, 2007).
    7. 7)
      • 17. Rajkumar, P., Devaraj, D.: ‘Adaptive particle swarm optimization approach for optimal reactive power planning’. Joint Int. Conf. Power System Technology and IEEE Power India Conf. POWERCON, October 2008, pp. 17.
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
      • 15. Keypour, R., Sharifzadeh, H.: ‘A comparative study on performance of metaheuristics optimization methods for optimal VAR sizing and allocation’. IEEE Region 8 Int. Conf. Computational Technologies in Electrical and Electronics Engineering (SIBIRCON), 2010, July 2010, pp. 777782.
    14. 14)
      • 13. Wu, F.F., Gross, G., Luini, J.F., Look, P.M.: ‘A two-stage approach to solving large-scale optimal power flows’. IEEE Conf. Proc. Power Industry Computer Applications Conf., PICA-79, May 1979, pp. 126136.
    15. 15)
      • 18. Keko, H., Duque, A.J., Miranda, V.: ‘A multiple scenario security constrained reactive power planning tool using epso’. Int. Conf. Intelligent Systems Applications to Power Systems, ISAP, November 2007, pp. 16.
    16. 16)
      • 35. Uryasev, S.: ‘Conditional value-at-risk: optimization algorithms and applications’. Proc. IEEE/IAFE/INFORMS 2000 Conf. Computational Intelligence for Financial Engineering, (CIFEr), 2000, pp. 4957.
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
      • 39. Fourer, R., Gay, D.M., Kernighan, B.W.: ‘AMPL: a modeling language for mathematical programming’ (Duxbury Press, 2002).
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
      • 16. Nara, K., Hu, H.: ‘A reactive power resource planning method by Tabu search in competitive markets’. Int. Conf. Power System Technology, Proc. PowerCon, 2000, vol. 2, pp. 10891094.
    31. 31)
    32. 32)
      • 38. IBM: ‘IBM ILOG CPLEX V12.1 users manual for CPLEX’, Int. Bus Mach. Corp., 2009, 46, (53), pp. 157.
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
      • 5. Kermanshahi, B., Takahashi, K., Zhou, Y.: ‘Optimal operation and allocation of reactive power resource considering static voltage stability’. Proc. Int. Conf. Power System Technology, POWERCON‘98.August 1998, vol. 2, pp. 14731477.
    40. 40)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2014.0224
Loading

Related content

content/journals/10.1049/iet-gtd.2014.0224
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading