access icon free Real-time transient stability assessment based on centre-of-inertia estimation from phasor measurement unit records

Several smart grid applications have recently been devised in order to timely perform supervisory functions along with self-healing and adaptive countermeasures based on system-wide analysis, with the ultimate goal of reducing the risks associated with potentially insecure operating conditions. Real-time transient stability assessment (TSA) belongs to this type of applications, which allows deciding and coordinating pertinent corrective control actions depending on the evolution of post-fault rotor-angle deviations. This study presents a novel approach for carrying out real-time TSA based on prediction of area-based centre-of-inertia (COI) referred rotor angles from phasor measurement unit (PMU) measurements. Monte Carlo-based procedures are performed to iteratively evaluate the system transient stability response, considering the operational statistics related to loading condition changes and fault occurrence rates, in order to build a knowledge database for PMU and COI-referred rotor-angles as well as to screen those relevant PMU signals that allows ensuring high observability of slow and fast dynamic phenomena. The database is employed for structuring and training an intelligent COI-referred rotor-angle regressor based on support vector machines [support vector regressor (SVR)] to be used for real-time TSA from selected PMUs. Besides, the SVR is optimally tuned by using the swarm variant of the mean-variance mapping optimisation. The proposal is tested on the IEEE New England 39-bus system. Results demonstrate the feasibility of the methodology in estimating the COI-referred rotor angles, which enables alerting about real-time transient stability threats per system areas, for which a transient stability index is also computed.

Inspec keywords: smart power grids; rotors; phasor measurement; power system faults; observability; Monte Carlo methods; support vector machines; power system transient stability

Other keywords: transient stability index; operational statistics; phasor measurement unit measurements; corrective control actions; Monte Carlo based procedures; real time transient stability assessment; post-fault rotor-angle deviations; TSA; COI; smart grid; IEEE New England 39-bus system; PMU; mean-variance mapping optimisation; support vector machines; centre-of-inertia estimation

Subjects: Power system control; Power system measurement and metering; Monte Carlo methods; Control of electric power systems; Monte Carlo methods

References

    1. 1)
      • 17. Glavic, M., Ernst, D., Ruiz-Vega, D., Wehenkel, L., Pavella, M.: ‘E-SIME- a method for transient stability closed-loop emergency control: achievements and prospects’. Proc. of the IREP Symp. 2007, Bulk Power System Dynamics and Control VII –‘Revitalizing Operational Reliability’, 19–24 August 2007, Charleston South Carolina, USA.
    2. 2)
      • 2. Amin, M.: ‘Toward self-healing infrastructure systems’ (Electric Power Research Institute (EPRI), IEEE, 2000).
    3. 3)
      • 11. Yamashita, K., Kameda, H.: ‘Out-of-step prediction logic for wide-area protection based on an autoregressive model’. Proc. 2004 IEEE PES Power Systems Conf. & Exposition, vol.1, New York, USA, pp. 307312.
    4. 4)
      • 32. Han, J., Kamber, M.: ‘Data mining: concepts and techniques’ (Elsevier, Morgan Kaufmann Publishers, 2006, 2nd edn.).
    5. 5)
      • 34. Rueda, J., Cepeda, J., Erlich, I.: ‘Estimation of location and coordinated tuning of PSS based on mean-variance mapping optimization’. IEEE PES General Meeting, San Diego, California, July 2012.
    6. 6)
      • 27. Kundur, P.: ‘Power system stability and control’ (McGraw-Hill, New York, USA, 1994).
    7. 7)
      • 18. Makarov, Y., Miller, C., Nguen, T., Ma, J.: ‘Characteristic ellipsoid method for monitoring power system dynamic behavior using phasor measurements’. Proc. VII Symp. on Bulk Power System Dynamics and Control, Charleston, USA, August 2007.
    8. 8)
    9. 9)
      • 16. Echeverría D., Rueda J., Cepeda J., Colomé D., Erlich I.: ‘Comprehensive approach for prediction and assessment of power system transient stability in real-time’. IEEE PES ISGT Europe, Denmark, October 6–9, 2013.
    10. 10)
      • 28. Izzri, N., Wahab, A., Mohamed, A.: ‘Area-based COI-referred rotor angle index for transient stability assessment and control of power systems’. Hindawi Publishing Corporation, Abstract and Applied Analysis, Volume 2012, available at: http://www.hindawi.com/journals/aaa/2012/410461/.
    11. 11)
      • 13. Liu, M., Sun, H., Zhang, B., Yao, L.: ‘PMU measurements and EMS models based transient stability on-line forecasting’. Power & Energy Society General Meeting, PES '09, 2009.
    12. 12)
    13. 13)
      • 33. Jollife, I.: ‘Principal component analysis’ (Springer, 2002, 2nd edn.).
    14. 14)
    15. 15)
      • 29. Cepeda, J., Rueda, J., Erlich, I., Colomé, G.: ‘Probabilistic approach-based PMU Placement for real-time power system vulnerability assessment’. Proc. ISGT PES Europe, Berlin, October 2012.
    16. 16)
    17. 17)
    18. 18)
      • 5. Cepeda, J., Colomé, G., Castrillón, N.: ‘Dynamic vulnerability assessment due to transient instability based on data mining analysis for smart grid applications’. Proc. IEEE PES ISGT-LA Conf., Medellín, Colombia, October 2011.
    19. 19)
      • 43. Zimmerman, D.: ‘MATPOWER’. PSERC. Software available at: http://www.pserc.cornell.edu/matpower.
    20. 20)
      • 19. Gomez F.: ‘Prediction and control of transient instability using wide area phasor measurements’. PhD thesis, University of Manitoba, September2011.
    21. 21)
      • 14. Wang, Y., Yu, J.: ‘Real time transient stability prediction of multi-machine system based on wide area measurement’. Power and Energy Engineering Conf., APPEEC 2009, Asia-Pacific, 2009.
    22. 22)
      • 7. Huang, Z., Zhang, P., Baldick, R., et al: ‘Vulnerability assessment for cascading failures in electric power systems’. Task Force on Cascading Failures, Proc. IEEE PES Power Systems Conf. and Exposition, Seattle, 2009.
    23. 23)
      • 44. Buehren, M.: ‘Differential evolution’. Software available at: http://www.mathworks.com/matlabcentral/fileexchange/18593-differential-evolution%20.
    24. 24)
      • 30. Iowa State University: ‘Loads and load duration’. academic notes. Available at: http://www.ee.iastate.edu/~jdm/ee455/notes2_loads.doc.
    25. 25)
      • 31. Dong, Z., Zhang, P.: ‘Emerging techniques in power system analysis’ (Springer, 2010).
    26. 26)
      • 36. Chang, C.-C., Lin, C.-J.: ‘LIBSVM: a library for support vector machines’. 2001. Software available at: http://www.csie.ntu.edu.tw/~cjlin/libsvm.
    27. 27)
      • 20. Kamwa, I., Beland, J., Mcnabb, D.: ‘PMU-based vulnerability assessment using wide-area severity indices and tracking modal analysis’. IEEE Power Systems Conf. and Exposition, 139-149, Atlanta, November 2006.
    28. 28)
      • 4. Echeverria, D., Rueda, J., Colomé, G., Erlich, I.: ‘Improved method for real-time transient stability assessment of power systems’. Proc. IEEE PES General Meeting, San Diego, California, July 2012.
    29. 29)
      • 42. Pai, M.: ‘Energy function analysis for power system stability’ (Kluwer Academic Publishers, 1989).
    30. 30)
    31. 31)
    32. 32)
      • 40. Erlich, I.: ‘Mean-variance mapping optimization algorithm home page’. Software available at: http://www.uni-due.de/mvmo/.
    33. 33)
      • 35. Abe, S.: ‘Support vector machines for pattern classification’ (Springer, 2010, 2nd edn.).
    34. 34)
      • 39. Cepeda, J., Ramirez, D., Colome, G.: ‘Probabilistic-based overload estimation for real-time smart grid vulnerability assessment’. Proc. Sixth IEEE/PES Transmission and Distribution: Latin America Conference and Exposition (T&D-LA), 2012, Montevideo, Uruguay, September 2012.
    35. 35)
      • 6. Savulescu, S., Virmani, S., Arnold, L., et al: ‘Real-time stability assessment in modern power system control centers’ (IEEE Press Series on Power Engineering, 2009).
    36. 36)
    37. 37)
    38. 38)
      • 37. Ye, S., Zheng, Y., Qian, Q.: ‘Transient stability assessment of power system based on support vector machine’. Atlantis Press, available at: http://www.atlantis-press.com/php/download_paper.php?id=1340.
    39. 39)
      • 45. Omran, M.:SPSO 2011’. Software available at: http://www.particleswarm.info/Programs.html#SPSO_2011_Matlab.
    40. 40)
    41. 41)
    42. 42)
      • 41. Cepeda, J., Verdugo, P.: ‘Determinación de los Límites de Estabilidad Estática de Ángulo del Sistema Nacional Interconectado’. Revista Técnica Energía, 2014, 10, (1), pp. 512.
    43. 43)
    44. 44)
    45. 45)
      • 15. Echeverría, D., Colomé, G.: ‘Evaluación en tiempo real de la Estabilidad Transitoria de SEP utilizando mediciones sincrofasoriales’. Proc. XIV ERIAC, Ciudad del Este, Paraguay, June 2011.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2013.0616
Loading

Related content

content/journals/10.1049/iet-gtd.2013.0616
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading