access icon free Data-mining-based intelligent anti-islanding protection relay for distributed generations

A data-mining-based intelligent anti-islanding detection scheme for distributed generation (DG) protection has been presented. The process starts at deriving highly involved features using discrete Fourier transform-based pre-processor at the DG end. The features derived include both positive and negative sequence quantities and related features. Once the features are retrieved, the decision tree is trained to build a data-mining model for identifying the islanding events from non-islanding situations, including disturbances close to islanding conditions. The proposed anti-islanding relay is extensively tested on simulation model and provides encouraging results considering wide variations in operating conditions. Further, the validation is extended on real-time digital simulator module to test the efficacy of the proposed anti-islanding relay. The test results indicate that the proposed anti-islanding relay can reliably detect islanding conditions while meeting the speed criteria.

Inspec keywords: data mining; power generation protection; power engineering computing; discrete Fourier transforms; relay protection; distributed power generation; decision trees

Other keywords: speed criteria; real-time digital simulator module; data-mining-based intelligent anti-islanding protection relay; simulation model; discrete Fourier transform-based preprocessor; negative sequence quantities; positive sequence quantities; efficacy testing; decision tree; distributed generation protection

Subjects: Integral transforms; Knowledge engineering techniques; Combinatorial mathematics; Power system protection; Integral transforms; Distributed power generation; Data handling techniques; Combinatorial mathematics; Power engineering computing

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
      • 4. IEEE guide for monitoring, information exchange, and control of distributed resources interconnected with electric power systems’, IEEE 1547.3, November 2007.
    5. 5)
      • 2. IEEE standard conformance test procedures for equipment interconnecting distributed resources with electric power systems’, IEEE Std. 1547.1, July 2005.
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
      • 3. IEEE draft application guide for IEEE Standard 1547: Interconnecting distributed resources with electric power systems’, IEEE P1547.2/D10, March 2008.
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • 1. IEEE standard for interconnecting distributed resources with electric power systems’, IEEE Std. 1547-2003, July 2003.
    20. 20)
    21. 21)
      • 14. El-Arroudi, K., Joós, G., Kamwa, I., Donald, T., McGillis, D.T.: ‘Intelligent-based approach to islanding detection in distributed generation’, IEEE Trans. Power Deliv., 2007, 22, (2), pp. 828835 (doi: 10.1109/TPWRD.2007.893592).
    22. 22)
      • 2. IEEE standard conformance test procedures for equipment interconnecting distributed resources with electric power systems’, IEEE Std. 1547.1, July 2005.
    23. 23)
      • 17. Samui, A., Samantaray, S.R.: ‘Assessment of ROCPAD relay for islanding detection in distributed generation’, IEEE Trans. Smartgrid, 2011, 2, (2), pp. 391398.
    24. 24)
      • 10. Sumner, M., Patethorpe, B., Thomas, D.W.P., Zanchetta, P., Piazza, M.C.D.: ‘A technique for power supply harmonic impedance estimation using a controlled voltage disturbance’, IEEE Trans. Power Electron., 2002, 17, pp. 207215 (doi: 10.1109/63.988831).
    25. 25)
      • 27. Ustun, T.S., Ozansoy, C., Zayegh, A.: ‘Modeling of a centralized microgrid protection system and distributed energy resources according to IEC 61850-7-420’, IEEE Trans. Power Syst., 2012, 27, (3), pp. 15601567 (doi: 10.1109/TPWRS.2012.2185072).
    26. 26)
      • 12. Pigazo, A., Liserre, M., Mastromauro, R.A., Moreno, V.M., Dell'Aquila, A.: ‘Wavelet-based islanding detection in grid-connected PV systems’, IEEE Trans. Ind. Electron., 2009, 56, (11), pp. 44454455 (doi: 10.1109/TIE.2008.928097).
    27. 27)
      • 4. IEEE guide for monitoring, information exchange, and control of distributed resources interconnected with electric power systems’, IEEE 1547.3, November 2007.
    28. 28)
      • 9. Hung, G., Chang, C., Chen, C.: ‘Automatic phase-shift method for islanding detection of grid-connected photovoltaic inverter’, IEEE Trans. Energy Convers., 2003, 18, pp. 169173 (doi: 10.1109/TEC.2002.808412).
    29. 29)
      • 15. Samantaray, S.R., El-Arroudi, K., Joos, G., Kamwa, I.: ‘Fuzzy rule-based approach for islanding detection in distributed generation’, IEEE Trans. Power Deliv., 2010, 25, (3), pp. 14271433 (doi: 10.1109/TPWRD.2010.2042625).
    30. 30)
      • 25. Hastie, T., Tibshirani, R., Friedman, J.: ‘The elements of statistical learning: data mining, inference, and prediction’ (Springer, New York, 2009, 2nd edn.), p. 745.
    31. 31)
      • 19. Gomez, F.R., Rajapakse, A.D., Annakkage, U.D., Fernando, I.T.: ‘Support vector machine based algorithm for post-fault transient stability status prediction using synchronized measurements’, IEEE Trans. Power Syst., 2011, 26, pp. 14741483 (doi: 10.1109/TPWRS.2010.2082575).
    32. 32)
      • 6. Redfern, M.A., Usta, O.: ‘A new microprocessor based islanding protection algorithm for dispersed storage and generation units’, IEEE Trans. Power Deliv., 1995, 10, pp. 12491254 (doi: 10.1109/61.400903).
    33. 33)
      • 24. Breiman, L.: ‘Random forests’, Mach. Learn., 2001, 45, pp. 532[online]|: http://www.stat.berkeley.edu/users/breiman/RandomForests/ (doi: 10.1023/A:1010933404324).
    34. 34)
      • 13. Lidula, N.W.A., Rajapakse, A.D.A.: ‘Pattern-recognition approach for detecting power islands using transient signals—part II: performance evaluation’, IEEE Trans. Power Deliv., 2012, 27, (3), pp. 10711080 (doi: 10.1109/TPWRD.2012.2187344).
    35. 35)
      • 20. Mei, K., Rovnyak, S.M.: ‘Response-based decision trees to trigger one-shot stabilizing control,IEEE Trans. Power Syst., 2004, 19, (1), pp. 531537 (doi: 10.1109/TPWRS.2003.821465).
    36. 36)
      • 3. IEEE draft application guide for IEEE Standard 1547: Interconnecting distributed resources with electric power systems’, IEEE P1547.2/D10, March 2008.
    37. 37)
      • 11. Mahat, P., Chen, Z., Bak-Jensen, B.: ‘A hybrid islanding detection technique using average rate of voltage change and real power shift’, IEEE Trans. Power Deliv., 2009, 24, (2), pp. 764771 (doi: 10.1109/TPWRD.2009.2013376).
    38. 38)
      • 5. Funabashi, T., Koyanagi, K., Yokoyama, R.: ‘A review of islanding detection methods for distributed resources’. IEEE Bologna Power Tech Conference, Bologna, Italy, June 2003, vol. 2, pp. 2326.
    39. 39)
      • 7. Freitas, W., Huang, Z., Xu, W.: ‘A practical method for assessing the effectiveness of vector surge relays for distribute generation applications’, IEEE Trans. Power Deliv., 2005, 20, pp. 5763 (doi: 10.1109/TPWRD.2004.838637).
    40. 40)
      • 26. Rattle (the R Analytical Tool to Learn Easily), by D. Williams, ver. 2.6, December 2010 [online]: http://rattle.togaware.com/.
    41. 41)
      • 8. Freitas, W., Xu, W., Affonso, C.M., Huang, Z.: ‘Comparative analysis between ROCOF and vector surge relays for distributed generation applications,IEEE Trans. Power Deliv., 2005, 20, (2), pt. 2, pp. 13151324 (doi: 10.1109/TPWRD.2004.834869).
    42. 42)
      • 16. Far, H.G., Anthony, J., Rodolakis, A.J., Joos, G.: ‘Synchronous distributed generation islanding protection using intelligent relays’, IEEE Trans. Smartgrid, 2012, 3, (4), pp. 16951703.
    43. 43)
      • 1. IEEE standard for interconnecting distributed resources with electric power systems’, IEEE Std. 1547-2003, July 2003.
    44. 44)
      • 21. Li, Z., Wu, W.: ‘Phasor measurements-aided decision trees for power system security assessment’. 2009 IEEE Computer Society Second Int. Conf. Information and Computing Science, pp. 358361.
    45. 45)
      • 22. Samantaray, S.R., Kamwa, I., Joos, G.: ‘Ensemble decision trees for phasor measurement unit-based wide-area security assessment in the operations time frame’, IET Gener. Transm. Distrib., 2010, 4, (12), pp. 13341348 (doi: 10.1049/iet-gtd.2010.0201).
    46. 46)
      • 18. Moulin, L.S., Alves da Silva, A.P., El-Sharkawi, M.A., Marks, R.J.II: ‘Support vector machines for transient stability analysis of large scale power systems’, IEEE Trans. Power Syst., 2004, 19, (2), pp. 818825 (doi: 10.1109/TPWRS.2004.826018).
    47. 47)
      • 23. Abonyi, J., Feil, B.: ‘Cluster analysis for data mining and system identification’ (Birkhauser, Basel-London-Berlin, 2007), p. 319.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2013.0494
Loading

Related content

content/journals/10.1049/iet-gtd.2013.0494
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading