Primary control level of parallel distributed energy resources converters in system of multiple interconnected autonomous microgrids within self-healing networks

Primary control level of parallel distributed energy resources converters in system of multiple interconnected autonomous microgrids within self-healing networks

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

To minimise the number of load sheddings in a microgrid (MG) during autonomous operation, islanded neighbour MGs can be interconnected if they are on a self-healing network and an extra generation capacity is available in the distributed energy resources (DER) of one of the MGs. In this way, the total load in the system of interconnected MGs can be shared by all the DERs within those MGs. However, for this purpose, carefully designed self-healing and supply restoration control algorithm, protection systems and communication infrastructure are required at the network and MG levels. In this study, first, a hierarchical control structure is discussed for interconnecting the neighbour autonomous MGs where the introduced primary control level is the main focus of this study. Through the developed primary control level, this study demonstrates how the parallel DERs in the system of multiple interconnected autonomous MGs can properly share the load of the system. This controller is designed such that the converter-interfaced DERs operate in a voltage-controlled mode following a decentralised power sharing algorithm based on droop control. DER converters are controlled based on a per-phase technique instead of a conventional direct-quadratic transformation technique. In addition, linear quadratic regulator-based state feedback controllers, which are more stable than conventional proportional integrator controllers, are utilised to prevent instability and weak dynamic performances of the DERs when autonomous MGs are interconnected. The efficacy of the primary control level of the DERs in the system of multiple interconnected autonomous MGs is validated through the PSCAD/EMTDC simulations considering detailed dynamic models of DERs and converters.


    1. 1)
      • 1. Moslehi, K., Kumar, R.: ‘A reliability perspective of the smart grid’, IEEE Trans. Smart Grid, 2010, 1, (1), pp. 5764 (doi: 10.1109/TSG.2010.2046346).
    2. 2)
      • 2. Fang, X., Misra, S., Xue, G., Yang, D.: ‘Smart grid – the new and improved power grid: a survey’, IEEE Commun. Surv. Tutor., 2012, 14, (4), pp. 944980 (doi: 10.1109/SURV.2011.101911.00087).
    3. 3)
      • 3. Liu, H., Chen, X., Yu, K., Hou, Y.: ‘The control and analysis of self-healing urban power grid’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 11191129 (doi: 10.1109/TSG.2011.2167525).
    4. 4)
      • 4. Kezunovic, M.: ‘Smart fault location for smart grids’, IEEE Trans. Smart Grid, 2011, 2, (1), pp. 1122 (doi: 10.1109/TSG.2011.2118774).
    5. 5)
      • 5. Moslehi, K., Kumar, A.B.R., Hirsch, P.: ‘Feasibility of a self-healing grid – Part II: benefit models and analysis’. IEEE Power Engineering Society General Meeting, 2006, pp. 18.
    6. 6)
      • 6. Zidan, A., El–Saadany, E.F.: ‘A cooperative multiagent framework for self-healing mechanisms in distribution systems’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 15251539 (doi: 10.1109/TSG.2012.2198247).
    7. 7)
      • 7. Arefifar, S.A., Mohamed, Y.A.I., EL-Fouly, T.H.M.: ‘Supply-adequacy-based optimal construction of microgrids in smart distribution systems’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 14911502 (doi: 10.1109/TSG.2012.2198246).
    8. 8)
      • 8. Košt’álová, A., Carvalho, P.M.S.: ‘Towards self-healing in distribution networks operation: bipartite graph modeling for automated switching’, Electr. Power Syst. Res., 2011, 81, (1), pp. 5156 (doi: 10.1016/j.epsr.2010.07.004).
    9. 9)
      • 9. Yinger, R.J.: ‘Self-healing circuits at southern California Edison’. IEEE Transmission and Distribution Conf. and Exposition, May 2012, pp. 13.
    10. 10)
      • 10. Hatziargyriou, N., Asano, H., Iravani, R., Marnay, C.: ‘Microgrids’, IEEE Power Energy Mag., 2007, 5, (4), pp. 7894 (doi: 10.1109/MPAE.2007.376583).
    11. 11)
      • 11. Huang, W., Lu, M., Zhang, L.: ‘Survey on microgrid control strategies’, Energy Proced., 2011, 12, pp. 206212 (doi: 10.1016/j.egypro.2011.10.029).
    12. 12)
      • 12. Lopes, J.A.P., Moreira, C.L., Madureira, A.G.: ‘Defining control strategies for microgrids islanded operation’, IEEE Trans. Power Syst., 2006, 21, (2), pp. 916924 (doi: 10.1109/TPWRS.2006.873018).
    13. 13)
      • 13. Chandorkar, M.C., Divan, D.M., Adapa, R.: ‘Control of parallel connected inverters in standalone AC supply systems’, IEEE Trans. Ind. Appl., 1993, 29, (1), pp. 136143 (doi: 10.1109/28.195899).
    14. 14)
      • 14. Majumder, R., Ghosh, A., Ledwich, G., Zare, F.: ‘Angle droop versus frequency droop in a voltage source converter based autonomous microgrid’. IEEE Power Engineering Society General Meeting, 2009, pp. 18.
    15. 15)
      • 15. Majumder, R., Shahnia, F., Ghosh, A., Ledwich, G., Wishart, M., Zare, F.: ‘Operation and control of a microgrid containing inertial and non–inertial micro sources’. IEEE Region 10 Conf. (TENCON), 2009, pp. 16.
    16. 16)
      • 16. Rowe, C.N., Summers, T.J., Betz, R.E., Cornforth, D.J., Moore, T.G.: ‘Arctan power–frequency droop for improved Microgrid stability’, IEEE Trans. on Power Electronics, 2013, 28, (8), pp. 37473759 (doi: 10.1109/TPEL.2012.2230190).
    17. 17)
      • 17. Rokrok, E., Golshan, M.E.H.: ‘Adaptive voltage droop scheme for voltage source converters in an islanded multibus microgrid’, IET Gener. Transm. Distrib., 2010, 4, (5), pp. 562578 (doi: 10.1049/iet-gtd.2009.0146).
    18. 18)
      • 18. Bevrani, H., Shokoohi, S.: ‘An intelligent droop control for simultaneous voltage and frequency regulation in islanded microgrids’, IEEE Trans. Smart Grid, 2013, 4, (3), pp. 15051513 (doi: 10.1109/TSG.2013.2258947).
    19. 19)
      • 19. Sanjari, M.J., Gharehpetian, G.B.: ‘Small signal stability based fuzzy potential function proposal for secondary frequency and voltage control of islanded microgrid’, Electr. Power Compon. Syst., 2013, 41, (5), pp. 485499 (doi: 10.1080/15325008.2012.755230).
    20. 20)
      • 20. Johnson, B., Davoudi, A., Chapman, P., Sauer, P.: ‘A unified dynamic characterization framework for microgrid systems’, Electr. Power Compon. Syst., 2011, 40, (1), pp. 93111 (doi: 10.1080/15325008.2011.621925).
    21. 21)
      • 21. Dou, C.X., Liu, D.L., Jia, X.B., Zhao, F.: ‘Management and control for smart microgrid based on hybrid control theory’, Electr. Power Compon. Syst., 2011, 39, (8), pp. 813832 (doi: 10.1080/15325008.2010.541414).
    22. 22)
      • 22. Majumder, R.: ‘Some aspects of stability in microgrids’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 32433252 (doi: 10.1109/TPWRS.2012.2234146).
    23. 23)
      • 23. Majumder, R., Chaudhuri, B., Ghosh, A., Majumder, R., Ledwich, G., Zare, F.: ‘Improvement of stability and load sharing in an autonomous microgrid using supplementary droop control loop’, IEEE Trans. Power Syst., 2010, 25, (2), pp. 796808 (doi: 10.1109/TPWRS.2009.2032049).
    24. 24)
      • 24. Nian, H., Zeng, R.: ‘Improved control strategy for stand-alone distributed generation system under unbalanced and non-linear loads’, IET Renew. Power Gener., 2011, 5, (5), pp. 323331 (doi: 10.1049/iet-rpg.2010.0216).
    25. 25)
      • 25. Katiraei, F., Iravani, M.R.: ‘Power management strategies for a microgrid with multiple distributed generation units’, IEEE Trans. Power Syst., 2006, 21, (4), pp. 18211831 (doi: 10.1109/TPWRS.2006.879260).
    26. 26)
      • 26. Yazdani, A., Iravani, R.: ‘A unified dynamic model and control for the voltage-sourced converter under unbalanced grid conditions’, IEEE Trans. Power Deliv., 2006, 21, (3), pp. 16201629 (doi: 10.1109/TPWRD.2006.874641).
    27. 27)
      • 27. Ghosh, A., Ledwich, G.: ‘Power quality enhancement using custom power devices’ (Kluwer Academic Publishers, 2002).
    28. 28)
      • 28. Teodorescu, R., Liserre, M., Rodriguez, P.: ‘Grid converters for photovoltaic and wind power systems’ (Wiley, 2011).
    29. 29)
      • 29. Blaabjerg, F., Teodorescu, R., Liserre, M., Timbus, A.V.: ‘Overview of control and grid synchronization for distributed power generation systems’, IEEE Trans. Ind. Electron., 2006, 53, (5), pp. 13981409 (doi: 10.1109/TIE.2006.881997).
    30. 30)
      • 30. Rocabert, J., Azevedo, G., Candela, I., Teoderescu, R., Rodriguez, P., Otadui, I.E.: ‘Microgrid connection management based on an intelligent connection agent’. IEEE 36th Annual Conf. Industrial Electronics (IECON), November 2010, pp. 30283033.
    31. 31)
      • 31. Majumder, R., Ghosh, A., Ledwich, G., Zare, F.: ‘Control of parallel converters for load sharing with seamless transfer between grid connected and islanded modes’. IEEE Power Engineering Society General Meeting, 2008, pp. 17.
    32. 32)
      • 32. Vandoorn, T.L., Meersman, B., De Kooning, J.D.M., Vandevelde, L.: ‘Transition from islanded to grid-connected mode of microgrids with voltage-based droop control’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 25452553 (doi: 10.1109/TPWRS.2012.2226481).
    33. 33)
      • 33. Hong, Y.Y., Hsiao, M.C., Chang, Y.R., Lee, Y.D., Huang, H.C.: ‘Multiscenario under frequency load shedding in a microgrid consisting of intermittent renewables’, IEEE Trans. Power Deliv., 2013, 28, (3), pp. 16101617 (doi: 10.1109/TPWRD.2013.2254502).
    34. 34)
      • 34. Seethalekshmi, K., Singh, S.N., Srivastava, S.C.: ‘A synchrophasor assisted frequency and voltage stability based load shedding scheme for self-healing of power system’, IEEE Trans. Smart Grid, 2011, 2, (2), pp. 221230 (doi: 10.1109/TSG.2011.2113361).
    35. 35)
      • 35. Lasseter, R.H.: ‘Smart distribution: coupled microgrids’, Proc. IEEE, 2011, 99, (6), pp. 10741082 (doi: 10.1109/JPROC.2011.2114630).
    36. 36)
      • 36. Rahman, S., Pipattanasomporn, M., Teklu, Y.: ‘Intelligent distributed autonomous power systems (IDAPS)’. IEEE Power Engineering Society General Meeting, 2007, pp. 18.
    37. 37)
      • 37. Bevrani, H.: ‘Robust power system frequency control’ (Springer, 2009).
    38. 38)
      • 38. Pal, B., Chaudhuri, B.: ‘Robust control in power systems’ (Springer, 2005).
    39. 39)
      • 39. Tewari, A.: ‘Modern control design with matlab and simulink’ (Wiley, 2002).
    40. 40)
      • 40. Spitsa, V., Ran, X., Salcedo, R., et al: ‘On the transient behavior of large-scale distribution networks during automatic feeder reconfiguration’, IEEE Trans. Smart Grid, 2012, 3, (2), pp. 887896 (doi: 10.1109/TSG.2012.2186319).
    41. 41)
      • 41. Shahnia, F., Majumder, R., Ghosh, A., Ledwich, G., Zare, F.: ‘Operation and control of a hybrid microgrid containing unbalanced and nonlinear loads’, Electr. Power Syst. Res., 2010, 80, (8), pp. 954965 (doi: 10.1016/j.epsr.2010.01.005).
    42. 42)
      • 42. Justo, J.J., Mwasilu, F., Lee, J., Jung, J.W.: ‘AC-microgrids versus DC-microgrids with distributed energy resources: a review’, Renew. Sustain. Energy Rev., 2013, 24, pp. 387405 (doi: 10.1016/j.rser.2013.03.067).
    43. 43)
      • 43. Guerrero, J.M., Vasquez, J.C., Matas, J., de Vicuna, L.G., Castilla, M.: ‘Hierarchical control of droop-controlled ac and dc microgrids – a general approach toward standardization’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 158172 (doi: 10.1109/TIE.2010.2066534).
    44. 44)
      • 44. Katiraei, F., Iravani, R., Hatziargyriou, N., Dimeas, A.: ‘Microgrids management’, IEEE Power Energy Mag., 2008, 6, (3), pp. 5465 (doi: 10.1109/MPE.2008.918702).
    45. 45)
      • 45. Vasquez, J.C., Mastromauro, R.A., Guerrero, J.M., Liserre, M.: ‘Voltage support provided by a droop-controlled multifunctional inverter’, IEEE Trans. Ind. Electron., 2009, 56, (11), pp. 45104519 (doi: 10.1109/TIE.2009.2015357).
    46. 46)
      • 46. Lasseter, R.H., Piagi, P.: ‘Control and design of microgrid components’. Final project report, Power Systems Engineering Research Center, University of Wisconsin-Madison, 2006.
    47. 47)
      • 47. Salamah, A.M., Finney, S.J., Williams, B.W.: ‘Autonomous controller for improved dynamic performance of AC grid, parallel-connected, single-phase inverters’, IET Gener. Transm. Distrib., 2008, 2, (2), pp. 209218 (doi: 10.1049/iet-gtd:20070144).
    48. 48)
      • 48. Ghosh, A., Ledwich, G.: ‘High bandwidth voltage and current control design for voltage source converters’. Proc. 20th Australasian University Power Engineering Conf. (AUPEC), 2010, pp. 16.
    49. 49)
      • 49. Ghosh, A., Ledwich, G.: ‘Load compensating DSTATCOM in weak AC systems’, IEEE Trans. Power Deliv., 2003, 18, (4), pp. 13021309.

Related content

This is a required field
Please enter a valid email address