access icon free Performance evaluation of controlling thermostatically controlled appliances as virtual generators using comfort-constrained state-queueing models

This study presents a detailed performance evaluation of comfort-constrained state-queueing model for integration of thermostatically controlled appliances (TCAs) as virtual generators (VGs). The configuration of VG models is presented. The heating mode of heating, ventilating and air-conditioning (HVAC) unit – heat pump is used as an example TCA load to demonstrate VG operation. First, an estimated baseline of the aggregated HVAC loads is obtained based on outdoor temperature forecasts using thermal dynamic models. Then, the control method of HVAC units for intra-hour load balancing is proposed. The effects of different comfort-constraints, outdoor temperature profiles and thermal deadbands are modelled to evaluate the performance of TCAs as VGs. The technical functionality of the TCA-VG is described and demonstrated by the modelling results.

Inspec keywords: distributed power generation; HVAC; queueing theory; power generation control; thermostats; power plants; heat pumps

Other keywords: heating ventilating and air-conditioning; heating mode; outdoor temperature profiles; VG model; outdoor temperature forecasts; TCA load; intra-hour load balancing; aggregated HVAC loads; thermal dynamic models; HVAC unit control method; virtual power plant; heat pump; distributed generators; comfort-constrained state-queueing models; virtual generators; thermostatically controlled appliance control; thermal dead-bands

Subjects: Air conditioning; Space heating; Queueing theory; Distributed power generation; Control of electric power systems; Control of heat systems; Queueing theory

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • 9. Lu, N., Chassin, D.P., Widergren, S.E.: ‘Modeling uncertainties in aggregated thermostatically controlled loads using a state queueing model’, IEEE Trans. Power Syst., 2005, 20, (2), pp. 725733 (doi: 10.1109/TPWRS.2005.846072).
    15. 15)
      • 1. Caralis, G., Zervos, A.: ‘Value of wind energy on the reliability of autonomous power systems’, IET Renew. Power Gener., 2010, 4, (2), pp. 186197 (doi: 10.1049/iet-rpg.2009.0052).
    16. 16)
      • 11. Pudjianto, D., Ramsay, C., Strbac, G.: ‘Virtual power plant and system integration of distributed energy resources’, IET Renew. Power Gener., 2007, 1, (1), pp. 1016 (doi: 10.1049/iet-rpg:20060023).
    17. 17)
      • 21. Wang, D., Fam, M., Jia, H.: ‘User comfort-constrained demand response for residential thermostatically-controlled loads and efficient power plant modeling’. In Press: Proc. of the CSEE, 2013.
    18. 18)
      • 2. Billinton, R., Chowdhury, A.A.: ‘Incorporation of wind energy conversion systems in conventional generating capacity adequacy assessment’, IEE Proc. Gener. Transm. Distrib., 1992, 139, (1), pp. 4756.
    19. 19)
      • 20. Callaway, D.S.: ‘Tapping the energy storage potential in electric loads to deliver load following and regulation, with application to wind energy’, Energy Convers. Manag., 2009, 50, (9), pp. 13891400 (doi: 10.1016/j.enconman.2008.12.012).
    20. 20)
      • 13. Taheri, H., Ghasemi, H., Rahimi-Kian, A., Akbari, T.: ‘Modeling and optimized scheduling of virtual power plant’. 19th Iranian Conf. on Electrical Engineering (ICEE 2011), Tehran, Iran, July 2011, pp. 16.
    21. 21)
      • 14. Roossien, B., Hommelberg, M., Warmer, C., Kok, K., Turkstra, J.-W.: ‘Virtual power plant field experiment using 10 micro-CHP units at consumer premises’. SmartGrids for Distribution, 2008 (IET-CIRED) (CIRED Seminar), Frankfurt, German, June 2008, pp. 14.
    22. 22)
      • 12. Ruiz, N., Cobelo, I., Oyarzabal, J.: ‘A direct load control model for virtual power plant management’, IEEE Trans. Power Syst., 2009, 24, (2), pp. 959966 (doi: 10.1109/TPWRS.2009.2016607).
    23. 23)
      • 10. Lu, N.: ‘An evaluation of the HVAC load potential for providing load balancing service’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 12631270 (doi: 10.1109/TSG.2012.2183649).
    24. 24)
      • 17. Wang, D., Parkinson, S., Miao, W., Jia, H., Crawford, C., Djilali, N.: ‘Hierarchical market integration of responsive loads as spinning reserve’, Appl. Energy, 2013, 104, pp. 229238 (doi: 10.1016/j.apenergy.2012.10.054).
    25. 25)
      • 7. Parkinson, S., Wang, D., Crawford, C., Djilali, N.: ‘Comfort-constrained distributed heat pump management’, Energy Proc., 2011, 12, pp. 849855 (doi: 10.1016/j.egypro.2011.10.112).
    26. 26)
      • 6. Hener, G., Goldman, C., Kirby, B.J., Meyer, M.K.: ‘Loads providing ancillary services: review of international experience’ (Lawrence Berkeley National Laboratory, Berkeley, CA, 2007) LBNL-62701, ORNL/TM-2007/060, May 2007.
    27. 27)
      • 15. Braun, M.: ‘Virtual power plant functionalities demonstrations in a large laboratory for distributed energy resources’. Proc. 20th Int. Conf. and Exhibition on Electricity Distribution – Part 1(CIRED 2009), Prague, Czech Republic, German, June 2009, pp. 14.
    28. 28)
      • 19. Parkinson, S., Wang, D., Crawford, C., Djilali, N.: ‘Wind integration in self-regulating electric load distributions’, Energy Syst., 2012, 3, (4), pp. 341377 (doi: 10.1007/s12667-012-0060-2).
    29. 29)
      • 5. Hu, P., Karki, R., Billinton, R.: ‘Reliability evaluation of generating systems containing wind power and energy storage’, IET Gener. Transm. Distrib., 2009, 3, (8), pp. 783791 (doi: 10.1049/iet-gtd.2008.0639).
    30. 30)
      • 16. Hatziargyriou, N.D., Tsikalakis, A.G., Karfopoulos, E., et al: ‘Evaluation of virtual power plant (VPP) operation based on actual measurements’. Proc. Seventh Mediterranean Conf. and Exhibition on Power Generation, Transmission, Distribution and Energy Conversion (MedPower 2010), Agia Napa, Greece, November 2010, pp. 18.
    31. 31)
      • 18. Wang, D., Parkinson, S., Miao, W., Jia, H., Crawford, C., Djilali, N.: ‘Online voltage security assessment considering comfort-constrained demand response control of distributed heat pump systems’, Appl. Energy, 2012, 96, pp. 104114 (doi: 10.1016/j.apenergy.2011.12.005).
    32. 32)
      • 4. Wu, C.C.: ‘Online methodology to determine reasonable spinning reserve requirement for isolated power systems’, IET Gener. Transm. Distrib., 2003, 150, (4), pp. 455461.
    33. 33)
      • 3. Milborrow, D.: ‘Assimilating wind [wind energy contribution to UK energy needs]’, IEE Rev., 2002, 48, (1), pp. 913 (doi: 10.1049/ir:20020101).
    34. 34)
      • 8. Lu, N., Chassin, D.P.: ‘A state queueing model of thermostatically controlled appliances’, IEEE Trans. Power Syst., 2004, 19, (3), pp. 16661673 (doi: 10.1109/TPWRS.2004.831700).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2013.0093
Loading

Related content

content/journals/10.1049/iet-gtd.2013.0093
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading