access icon free Authenticated voltage control of partitioned power networks with optimal allocation of STATCOM using heuristic algorithm

This study presents a secondary voltage control based on an optimisation algorithm to locate the control buses and regulate the voltage. Control buses are the buses where compensators will be installed on these buses to regulate voltage and avoid voltage violations. Firstly, partitioning algorithm using fuzzy C-means has been implemented on the power network. Partitioning techniques split the power system into regions to avoid the propagation of disturbances between regions by using local controllers. Then, a number of buses are labelled as control buses displaying the critical point for voltage control in each region. The control algorithm is a decentralised controller which tries to eliminate voltage violations in power system resulting from load variations and disturbances. The decentralised controllers are implemented using flexible AC transmission system (FACTS) devices such as static synchronous compensator (STATCOM). The methodology is applied to the IEEE 118-bus network. The results show the performance and ability of the partitioning algorithm and bus control selection to regulate the voltage and avoid propagation of disturbances between regions.

Inspec keywords: fuzzy set theory; decentralised control; static VAr compensators; transmission networks; flexible AC transmission systems; voltage control; IEEE standards

Other keywords: voltage regulate; control buses; heuristic algorithm; fuzzy C-means; decentralised controller; FACTS device; authenticated voltage control; load variations; partitioned power networks; STATCOM; IEEE 118-bus network; optimisation algorithm

Subjects: Control of electric power systems; Combinatorial mathematics; Voltage control; Other power apparatus and electric machines; Multivariable control systems; Combinatorial mathematics; Power transmission, distribution and supply

References

    1. 1)
      • 15. Jonsson, M., Begovic, M., Daalder, J.: ‘A new method suitable for real-time generator coherency determination’, IEEE Trans. Power Syst., 2004, 19, (3), pp. 14731482 (doi: 10.1109/TPWRS.2004.826799).
    2. 2)
      • 11. Mehrjerdi, H., Lefebvre, S., Saad, M., Asber, D.: ‘Eliminating voltage violations in power systems using secondary voltage control and decentralized neural network’. Proc. IEEE PES General Meeting, Vancouver, Canada, 21–25 July 2013.
    3. 3)
      • 10. Sheng, S., Li, K.K., Chan, W.L., Xiangjun, Z., Xianzhong, D.: ‘Framework and implementation of secondary voltage regulation strategy based on multi-agent technology’, Electr. Power Energy Syst., 2009, 31, pp. 6777 (doi: 10.1016/j.ijepes.2008.10.004).
    4. 4)
      • 8. Heo, J.S., Lee, K.Y.: ‘A multi-agent system-based intelligent identification system for control and fault-diagnosis for a large-scale power plant’. Presented at the IEEE Power Engineering Society General Meeting, Montreal, QC, Canada, 2006.
    5. 5)
      • 6. Wang, H.F., Li, H., Chen, H.: ‘Coordinated secondary voltage control to eliminate voltage violations in power system contingencies’, IEEE Trans. Power Syst., 2003, 18, (2), pp. 588595 (doi: 10.1109/TPWRS.2003.810896).
    6. 6)
      • 2. Aquino-Lugo, A.A., Klump, R., Overbye, T.J.: ‘References a control framework for the smart grid for voltage support using agent-based technologies’, IEEE Trans. Smart Grid, 2011, 2, (1), pp. 173180 (doi: 10.1109/TSG.2010.2096238).
    7. 7)
      • 7. Hossack, J.A., Menal, J., McArthur, S.D.J., McDonald, J.R.: ‘A multiagent architecture for protection engineering diagnostic assistance’, IEEE Trans. Power Syst., 2003, 18, (2), pp. 639647 (doi: 10.1109/TPWRS.2003.810910).
    8. 8)
      • 17. Ghahremani, E., Kamwa, I.: ‘Maximizing transmission capacity through a minimum set of distributed multi-type FACTS’. Proc. IEEE PES General Meeting, San Diego, USA, 22–27 July 2012.
    9. 9)
      • 5. Wen, J.Y., Wu, Q.H., Turner, D.R., Cheng, S.J., Fitch, J.: ‘Optimal coordinated voltage control for power system voltage stability’, IEEE Trans. Power Syst., 2004, 19, (2), pp. 11151122 (doi: 10.1109/TPWRS.2004.825897).
    10. 10)
      • 20. Dunn, J.C.: ‘A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters’, J. Cybern., 1973, 3, pp. 3257 (doi: 10.1080/01969727308546046).
    11. 11)
      • 16. De Tuglie, E., Iannone, S.M., Torelli, F.: ‘A coherency recognition based on structural decomposition procedure’, IEEE Trans. Power Syst., 2008, 23, pp. 555563 (doi: 10.1109/TPWRS.2008.919313).
    12. 12)
      • 14. Xu, G., Vittal, V.: ‘Slow coherency based cutset determination algorithm for large power systems’, IEEE Trans. Power Syst., 2010, 25, (2), pp. 877884 (doi: 10.1109/TPWRS.2009.2032421).
    13. 13)
      • 12. Kamwa, I., Pradhan, A.K., Joos, G.: ‘Automatic segmentation of large power systems into fuzzy coherent areas for dynamic vulnerability assessment’, IEEE Trans. Power Syst., 2007, 22, (4), pp. 19741985 (doi: 10.1109/TPWRS.2007.907383).
    14. 14)
      • 9. Metzger, M., Polaków, G.: ‘A survey on applications of agent technology in industrial process control’, IEEE Trans. Ind. Inf., 2011, 7, (4), pp. 570581 (doi: 10.1109/TII.2011.2166781).
    15. 15)
      • 18. Golderberg, D.E.: ‘Genetic algorithm in search optimization and machine learning’ (Addison-Wesley Publishing Company, Inc., 1989).
    16. 16)
      • 19. Matlab® Help Documentation, Global Optimization Toolbox User's Guide, The MathWorks, Inc., 2010.
    17. 17)
      • 21. Bezdek, J.C.: ‘Pattern recognition with fuzzy objective function algoritms’ (Plenum Press, New York, 1981).
    18. 18)
      • 13. Kamwa, I., Pradhan, A.K., Joos, G., Samantaray, S.R.: ‘Fuzzy partitioning of a real power system for dynamic vulnerability assessment’, IEEE Trans. Power Syst., 2009, 24, (5), pp. 13561365 (doi: 10.1109/TPWRS.2009.2021225).
    19. 19)
      • 22. Zimmerman, R.D., Murillo-Sánchez, C.E., Thomas, R.J.: ‘MATPOWER: steady-state operations, planning, and analysis tools for power systems research and education’, IEEE Trans. Power Syst., 2011, 26, (1), pp. 10881096 (doi: 10.1109/TPWRS.2010.2051168).
    20. 20)
      • 3. Paul, J.P., Leost, J.Y., Tesseron, J.M.: ‘Survey of the secondary voltage control in France: present realization and investigation’, IEEE Trans. Power Syst., 1987, 2, pp. 505511 (doi: 10.1109/TPWRS.1987.4335155).
    21. 21)
      • 1. Mehrjerdi, H., Lefebvre, S., Saad, M., Asber, D.: ‘A decentralized control of partitioned power networks for voltage regulation and prevention against disturbance propagation’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 14611469.
    22. 22)
      • 4. Corsi, S., Pozzi, M., Sabelli, C., Serrani, A.: ‘The coordinated automatic voltage control of the Italian transmission grid – Part I: Reasons of the choice and overview of the consolidated hierarchical system’, IEEE Trans. Power Syst., 2004, 19, (4), pp. 17231732 (doi: 10.1109/TPWRS.2004.836185).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2013.0042
Loading

Related content

content/journals/10.1049/iet-gtd.2013.0042
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading