access icon free Optimal multi-area generation schedule considering renewable resources mix: a real-time approach

One of the key role players in deregulated electricity markets is a retailer. This study proposes a multi-area dynamic economic dispatch (MA-DED) model for a retailer, taking into account hydrothermal generating units, wind power generation and power pool market, to supply the overall demand of the system for a given horizon. The uncertainties in wind power generations, energy prices and demand of the system are also modelled to make the proposed approach more practical in case of real-time operation of practical power systems. Scenario-based approach is adopted for uncertainty modelling. In order to make the proposed MA-DED applicable in real-time operation of power systems, optimality condition decomposition (OCD) technique is employed along with parallel computation ability. The proposed approach is examined on two interconnected power networks, to demonstrate its applicability for real-time scheduling of joint thermal and undispatchable renewable energy resources. DED, multi-area, OCD, real-time, uncertainty modelling, scenario-based approach.

Inspec keywords: hydrothermal power systems; power generation dispatch; wind power plants; power system interconnection; power generation scheduling; power generation economics; renewable energy sources; power system simulation; power markets; pricing; decomposition; retailing

Other keywords: hydrothermal generating unit; scenario-based approach; power pool market; multiarea dynamic economic dispatch model; uncertainty modelling; undispatchable renewable energy resource; energy pricing; parallel computation ability; deregulated electricity market; OCD; power network interconnection; retailer; optimality condition decomposition technique; MA-DED; optimal multiarea generation scheduling; wind power generation

Subjects: Energy resources; Wind power plants; Hydroelectric power stations and plants; Thermal power stations and plants; Power system management, operation and economics

References

    1. 1)
      • 28. Mohammadi-Ivatloo, B., Zareipour, H., Amjady, N., Ehsan, M.: ‘Application of information-gap decision theory to risk-constrained self-scheduling of gencos’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 10931102.
    2. 2)
      • 15. Mohammadi-Ivatloo, B., Zareipour, H., Ehsan, M., Amjady, N.: ‘Economic impact of price forecasting inaccuracies on self-scheduling of generation companies’, Electr. Power Syst. Res., 2011, 81, (2), pp. 617624 (doi: 10.1016/j.epsr.2010.10.022).
    3. 3)
      • 5. Ouyang, Z., Shahidehpour, S.: ‘Heuristic multi-area unit commitment with economic dispatch’, IEE Proc. C, Gener. Transm. Distrib., 1991, 138, (3), pp. 242252 (doi: 10.1049/ip-c.1991.0030).
    4. 4)
      • 7. Manoharan, P., Kannan, P., Baskar, S., Iruthayarajan, M.W.: ‘Evolutionary algorithm solution and kkt based optimality verification to multi-area economic dispatch’, Int. J. Electr. Power Energy Syst., 2009, 31, (78), pp. 365373 (doi: 10.1016/j.ijepes.2009.03.010).
    5. 5)
      • 12. Conejo, A.J., Carrion, M., Morales, J.M.: ‘Decision making under uncertainty in electricity markets’ (Springer, New York, USA, 2010).
    6. 6)
      • 9. Zhu, J., Momoh, J.A.: ‘Multi-area power systems economic dispatch using nonlinear convex network flow programming’, Electr. Power Syst. Res., 2001, 59, (1), pp. 1320 (doi: 10.1016/S0378-7796(01)00131-6).
    7. 7)
      • 11. Dicorato, M., Forte, G., Pisani, M., Trovato, M.: ‘Planning and operating combined wind-storage system in electricity market’, IEEE Trans. Sustain. Energy, 2012, 3, (2), pp. 209217 (doi: 10.1109/TSTE.2011.2179953).
    8. 8)
      • 21. Brooke, A., Kendrick, D., Meeraus, A.: ‘GAMS release 2.25: a user's guide’ (GAMS Development Corporation, Washington, USA, 1996).
    9. 9)
      • 2. Yingvivatanapong, C., Wei-Jen, L., Liu, E.: ‘Multi-area power generation dispatch in competitive markets’, IEEE Trans. Power Syst., 2008, 23, (1), pp. 196203 (doi: 10.1109/TPWRS.2007.913304).
    10. 10)
      • 16. Contreras, J., Espinola, R., Nogales, F.J., Conejo, A.J.: ‘Arima models to predict next-day electricity prices’, IEEE Trans. Power Syst., 2003, 18, (3), pp. 10141020 (doi: 10.1109/TPWRS.2002.804943).
    11. 11)
      • 30. Soroudi, A., Afrasiab, M.: ‘Binary pso-based dynamic multi-objective model for distributed generation planning under uncertainty’, IET Renew. Power Gener., 2012, 6, (2), pp. 6778 (doi: 10.1049/iet-rpg.2011.0028).
    12. 12)
      • 26. Ben-Haim, Y.: ‘Info-gap decision theory: decisions under severe uncertainty’ (Academic Press, 2006).
    13. 13)
      • 27. Soroudi, A., Aien, M., Ehsan, M.: ‘A probabilistic modeling of photo voltaic modules and wind power generation impact on distribution networks’, IEEE Syst. J., 2012, 6, (2), pp. 254259 (doi: 10.1109/JSYST.2011.2162994).
    14. 14)
      • 1. Streiffert, D.: ‘Multi-area economic dispatch with tie line constraints’, IEEE Trans. Power Syst., 1995, 10, (4), pp. 19461951 (doi: 10.1109/59.476062).
    15. 15)
      • 33. Jiang, W., Yan, Z., Hu, Z.: ‘A novel improved particle swarm optimization approach for dynamic economic dispatch incorporating wind power’, Electr. Power Compon. Syst., 2011, 39, (5), pp. 461477 (doi: 10.1080/15325008.2010.528536).
    16. 16)
      • 19. Contreras, J., Espinola, R., Nogales, F., Conejo, A.: ‘Arima models to predict next-day electricity prices’, IEEE Trans. Power Syst., 2003, 18, (3), pp. 10141020 (doi: 10.1109/TPWRS.2002.804943).
    17. 17)
      • 31. Soroudi, A.: ‘Possibilistic-scenario model for dg impact assessment on distribution networks in an uncertain environment’, IEEE Trans. Power Syst., 2012, 27, (3), pp. 12831293 (doi: 10.1109/TPWRS.2011.2180933).
    18. 18)
      • 6. Sharma, M., Pandit, M., Srivastava, L.: ‘Reserve constrained multi-area economic dispatch employing differential evolution with time-varying mutation’, Int. J. Electr. Power Energy Syst., 2011, 33, (3), pp. 753766 (doi: 10.1016/j.ijepes.2010.12.033).
    19. 19)
      • 4. Wang, C., Shahidehpour, S.: ‘A decomposition approach to nonlinear multi-area generation scheduling with tie-line constraints using expert systems’, IEEE Trans. Power Syst., 1992, 7, (4), pp. 14091418 (doi: 10.1109/59.207362).
    20. 20)
      • 17. Mohammadi-ivatloo, B., Rabiee, A., Ehsan, M.: ‘Time-varying acceleration coefficients ipso for solving dynamic economic dispatch with non-smooth cost function’, Energy Convers. Manag., 2012, 56, (0), pp. 175183 (doi: 10.1016/j.enconman.2011.12.004).
    21. 21)
      • 20. Rabiee, A., Parniani, M.: ‘Voltage security constrained multi-period optimal reactive power flow using benders and optimality condition decompositions’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 696708.
    22. 22)
      • 25. Ben-Tal, A., Nemirovski, A.: ‘Robust optimization–methodology and applications’, Math. Program., 2002, 92, (3), pp. 453480 (doi: 10.1007/s101070100286).
    23. 23)
      • 14. Atwa, Y., El-Saadany, E.: ‘Probabilistic approach for optimal allocation of wind-based distributed generation in distribution systems’, IET Renew. Power Gener., 2011, 5, (1), pp. 7988 (doi: 10.1049/iet-rpg.2009.0011).
    24. 24)
      • 32. Abu-Mouti, F., El-Hawary, M.: ‘Optimal dynamic economic dispatch including renewable energy source using artificial bee colony algorithm’. 2012 IEEE Int. Systems Conf. (SysCon), March 2012, pp. 16.
    25. 25)
      • 23. Panigrahi, C.K., Chattopadhyay, P.K., Chakrabarti, R.N., Basu, M.: ‘Simulated annealing technique for dynamic economic dispatch’, Electr. Power Compon. Syst., 2006, 34, (5), pp. 577586 (doi: 10.1080/15325000500360843).
    26. 26)
      • 22. Drud, A.: ‘Conopt: a large-scale grg code’, ORSA J. Comput., 1994, 6, (2), pp. 207216 (doi: 10.1287/ijoc.6.2.207).
    27. 27)
      • 10. Hartmann, B., Dan, A.: ‘Cooperation of a grid-connected wind farm and an energy storage unit;demonstration of a simulation tool’, IEEE Trans. Sustain. Energy, 2012, 3, (1), pp. 4956 (doi: 10.1109/TSTE.2011.2163176).
    28. 28)
      • 24. Basu, M.: ‘An interactive fuzzy satisfying method based on evolutionary programming technique for multiobjective short-term hydrothermal scheduling’, Electr. Power Syst. Res., 2004, 69, (23), pp. 277285 (doi: 10.1016/j.epsr.2003.10.003).
    29. 29)
      • 13. Conejo, R.M.A.J., Castillo, E., Garcia-Bertrand, R.: ‘Decomposition techniques in mathematical programming’ (Springer-Verlag, Berlin Heidelberg, 2006).
    30. 30)
      • 18. Wang, S.-K., Chiou, J.-P., Liu, C.-W.: ‘Non-smooth/non-convex economic dispatch by a novel hybrid differential evolution algorithm’, IET Gener. Transm. Distrib., 2007, 1, (5), pp. 793803 (doi: 10.1049/iet-gtd:20070183).
    31. 31)
      • 29. Soroudi, A., Ehsan, M.: ‘Igdt based robust decision making tool for dnos in load procurement under severe uncertainty’, IEEE Trans. Smart Grid, 2013, 4, (2), pp. 886895 (doi: 10.1109/TSG.2012.2214071).
    32. 32)
      • 8. Chung, K., Kim, B., Hur, D.: ‘Multi-area generation scheduling algorithm with regionally distributed optimal power flow using alternating direction method’, Int. J. Electr. Power Energy Syst., 2011, 33, (9), pp. 15271535.
    33. 33)
      • 3. Tseng, C.-L., Guan, X., Svoboda, A.: ‘Multi-area unit commitment for large-scale power systems’, IEE Proc., Gener. Transm. Distrib., 1998, 145, (4), pp. 415421 (doi: 10.1049/ip-gtd:19981987).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2012.0735
Loading

Related content

content/journals/10.1049/iet-gtd.2012.0735
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading