Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Adaptive neuro-fuzzy controller for static VAR compensator to damp out wind energy conversion system oscillation

Wind shear and tower shadow produce a periodic pulse reduction in mechanical torque captured from wind energy resulting in wind energy conversion system (WECS) active power oscillations. In this study, an adaptive neuro-fuzzy controller for static VAR compensator, used in power networks integrated with WECS, is presented to address the torque oscillation problem. The proposed controller consists of a radial basis function neural network representing a third-order auto-regressive and moving average system model and performing the prediction, and a main controller with adaptive neuro-fuzzy inference system providing the damping signal. A modified two-area four-machine power network with WECS integration is applied to validate the proposed implementation, compared with conventional lead/lag compensation. Time-domain simulations prove that the proposed controller can provide a damping signal to improve the active power oscillation and system dynamic stability, influenced by torque oscillations under WECSs synchronised operating condition.

References

    1. 1)
      • 15. Hughes, F.M., Anaya-Lara, O., Ramtharan, G., Jenkins, N., Strbac, G.: ‘Influence of tower shadow and wind turbulence on the performance of power system stabilizers for DFIG-based wind farms’, IEEE Trans. Energy Convers., 2008, 23, (2), pp. 519528.
    2. 2)
      • 1. Strachan, P.A., Toke, D., Lal, D.: ‘Wind power and power politics’ (Routledge, New York, 2010).
    3. 3)
      • 24. McSwiggan, D., Littler, T., Morrow, D.J., Kennedy, J.: ‘A study of tower shadow effect on fixed-speed wind turbines’. Proc. 43rd Int. Universities Power Engineering Conf., 2008, (UPEC 2008), 1–4 September 2008, pp. 15.
    4. 4)
      • 19. Mohagheghi, S., Venayagamoorthy, G.K., Harley, R.G.: ‘Optimal neuro-fuzzy external controller for a STATCOM in the 12-bus benchmark power system’, IEEE Trans. Power Deliv., 2007, 22, (4), pp. 25482558.
    5. 5)
      • 2. Huang, H., Chung, C.Y.: ‘Coordinated damping control design for DFIG-based wind generation considering power output variation’, IEEE Trans. Power Syst., 2012, 27, (4), pp. 19161925.
    6. 6)
      • 6. Gautam, D., Vittal, V., Harbour, T.: ‘Impact of increased penetration of DFIG-based wind turbine generators on transient and small signal stability of power systems’, IEEE Trans. Power Syst., 2009, 24, (3), pp. 14261434.
    7. 7)
      • 18. Ruhua, Y., Eghbali, H.J., Nehrir, M.H.: ‘An online adaptive neuro-fuzzy power system stabilizer for multimachine systems’, IEEE Trans. Power Syst., 2003, 18, (1), pp. 128135.
    8. 8)
      • 12. Cidras, J., Feijoo, A.E.: ‘A linear dynamic model for asynchronous wind turbines with mechanical fluctuations’, IEEE Trans. Power Syst., 2002, 17, (3), pp. 681687.
    9. 9)
      • 28. Demuth, H., Beale, M.: ‘Neural network toolbox user's guide’ (The Math Works, Inc., Natick, MA, 1998).
    10. 10)
      • 14. Larsson, A.: ‘Flicker emission of wind turbines during continuous operation’, IEEE Trans. Energy Convers., 2002, 17, (1), pp. 114118.
    11. 11)
      • 8. Sanchez-Gasca, J.J., Miller, N.W., Price, W.W.: ‘A modal analysis of a two-area system with significant wind power penetration’. Power Systems Conf. and Exposition, 2004, IEEE PES, 10–13 October 2004, vol. 2, pp. 11481152.
    12. 12)
      • 20. Ramakrishna, G., Malik, O.P.: ‘Radial basis function identifier and pole-shifting controller for power system stabilizer application’, IEEE Trans. Energy Convers., 2004, 19, (4), pp. 663670.
    13. 13)
      • 23. Cidras, J., Feijoo, A.E., Carrillo Gonzalez, C.: ‘Synchronization of asynchronous wind turbines’, IEEE Trans. Power Syst., 2002, 17, (4), pp. 11621169.
    14. 14)
      • 25. Pagola, F.L., Perez-Arriaga, I.J., Verghese, G.C.: ‘On sensitivities, residues and participations: applications to oscillatory stability analysis and control’, IEEE Trans. Power Syst., 1989, 4, (1), pp. 278285.
    15. 15)
      • 4. Chung, C.Y., Wang, L., Howell, F., Kundur, P.: ‘Generation rescheduling methods to improve power transfer capability constrained by small-signal stability’, IEEE Trans. Power Syst., 2004, 19, (1), pp. 524530.
    16. 16)
      • 16. Ke, D.P., Chung, C.Y.: ‘An inter-area mode oriented pole-shifting method with coordination of control effects for robust tuning of power oscillation damping controllers’, IEEE Trans. Power Syst., 2012, 27, (3), pp. 14221432.
    17. 17)
      • 9. Slootweg, J.G., Kling, W.L.: ‘The impact of large scale wind power generation on power system oscillations’, Electr. Power Syst. Res., 2003, 67, (1), pp. 920.
    18. 18)
      • 22. Heier, S.: ‘Grid integration of wind energy conversion system’ (Wiley, New York, 1998).
    19. 19)
      • 13. Fadaeinedjad, R., Moschopoulos, G., Moallem, M.: ‘The impact of tower shadow, yaw error, and wind shears on power quality in a wind–diesel system’, IEEE Trans. Energy Convers., 2009, 24, (1), pp. 102111.
    20. 20)
      • 3. Yu, H., Chung, C.Y., Wong, K.P., Zhang, J.H.: ‘A chance constrained transmission network expansion planning method with consideration of load and wind farm uncertainties’, IEEE Trans. Power Syst., 2009, 24, (3), pp. 15681576.
    21. 21)
      • 5. Zhang, J.B., Chung, C.Y., Han, Y.D.: ‘A novel modal decomposition control and its application to PSS design for damping inter-area oscillations in power systems’, IEEE Trans. Power Syst., 2012, 27, (4), pp. 20152025.
    22. 22)
      • 10. Dolan, D.S.L., Lehn, P.W.: ‘Simulation model of wind turbine 3p torque oscillations due to wind shear and tower shadow’, IEEE Trans. Energy Convers., 2006, 21, (3), pp. 717724.
    23. 23)
      • 27. Kundur, P.: ‘Power system stability and control’ (McGraw-Hill, New York, 1994).
    24. 24)
      • 21. Jang, J.-S.R.: ‘ANFIS: adaptive-network-based fuzzy inference system’, IEEE Trans. Syst. Man Cybern., 1993, 23, (3), pp. 665685.
    25. 25)
      • 7. Mendonca, A., Lopes, J.A.P.: ‘Impact of large scale wind power integration on small signal stability’. Future Power Systems, 2005 Int. Conf., 18 November 2005, pp. 15.
    26. 26)
      • 26. Yang, N., Liu, Q., McCalley, J.D.: ‘TCSC controller design for damping interarea oscillations’, IEEE Trans. Power Syst., 1998, 13, (4), pp. 13041310.
    27. 27)
      • 11. Thiringer, T., Dahlberg, J.-A.: ‘Periodic pulsations from a three-bladed wind turbine’, IEEE Trans. Energy Convers., 2001, 16, (2), pp. 128133.
    28. 28)
      • 17. Ke, D.P., Chung, C.Y., Xue, Y.: ‘An eigenstructure-based performance index and its application to control design for damping inter-area oscillations in power systems’, IEEE Trans. Power Syst., 2011, 26, (4), pp. 23712380.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2012.0609
Loading

Related content

content/journals/10.1049/iet-gtd.2012.0609
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address