Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Three-phase power flow calculations by direct Z LOOP method for microgrids with electric vehicle charging demands

A three-phase power flow solution approach for microgrids with electric vehicle (EV) demands is proposed in this study. Based on the loop frame of reference, a direct iterative approach is adopted. Most of microgrids are essentially unbalanced; hence, the proposed approach is developed based on true phase (a-b-c) frame, rather than the sequence-component frame. Based on the true phase frame, the total dimension of the performance equations of the network is the minimum required to represent the microgrid system. The mathematical component models, such as feeders, capacitors/reactors, transformers, automatic voltage regulators, loads, distributed energy resource units and EV demands can easily be involved in the proposed approach. To examine the validity of the proposed algorithm, four IEEE sample systems and a practical Taiwan Power Company distribution system are used as benchmarks for comparisons. The test results show that the proposed approach is accurate, efficient and robust with minimum memory requirements for three-phase power flow studies.

References

    1. 1)
      • 25. Garcia-Valle, R., Vlachogiannis, J.G.: ‘Letter to the editor: electric vehicle demand model for load flow studies’, Electr. Power Compon. Syst., 2009, 37, (5), pp. 577582 (doi: 10.1080/15325000802599411).
    2. 2)
      • 18. Chen, T.H., Chang, J.D., Chang, Y.L.: ‘Models of grounded mid-tap open-wye and open-delta connected transformers for rigorous analysis of a distribution system’, IEE Proc. Gener., Transm. Distrib., 1996, 143, (1), pp. 8288 (doi: 10.1049/ip-gtd:19960168).
    3. 3)
      • 22. Effect of reduced voltage on the operation and efficicency of electrical loads: Energy Systems Research Center, The University of Texas at Arilington, June 1984 and July 1985. Report no.: EPRI Final Report EL-3591.
    4. 4)
      • 10. Cheng, C.S., Shirmohammadi, D.: ‘A three-phase power flow method for real-time distribution system analysis’, IEEE Trans. Power Syst., 1995, 10, (2), pp. 671679 (doi: 10.1109/59.387902).
    5. 5)
      • 1. Lo, K.L., Zhang, C.: ‘Decomposed three-phase power flow solution using the sequence component frame’, IEE Proc., Gener. Transm. Distrib., 1993, 140, (3), pp. 181188 (doi: 10.1049/ip-c.1993.0028).
    6. 6)
      • 28. Kersting, W.H.: ‘Radial distribution test feeders’, IEEE Trans. Power Syst., 1991, 6, (3), pp. 975985 (doi: 10.1109/59.119237).
    7. 7)
      • 20. Determing load characteristics for transient performances: energy systems Research Center, The University of Texas at Arlington, May1979. Report no.: EPRI Final Report EL-848.
    8. 8)
      • 9. Chen, T.H., Chen, M.S., Inoue, T., Kotas, P., Chebli, E.A.: ‘Three-phase cogenerator and transformer models for distribution system analysis’, IEEE Trans Power Deliv., 1991, 6, (4), pp. 16711681 (doi: 10.1109/61.97706).
    9. 9)
      • 27. Stagg, G.W., El-Abiad, A.H.: ‘Computer methods in power system analysis’ (McGraw-Hill Book Company, 1980, 2nd edn.).
    10. 10)
      • 15. Chen, T.H., Yang, N.C.: ‘Loop frame of reference based three-phase power flow for unbalanced radial distribution systems’, Electr. Power Syst. Res., 2010, 80, (7), pp. 799806 (doi: 10.1016/j.epsr.2009.12.006).
    11. 11)
      • 29. Yang, N.C., Chen, T.H.: ‘Dual genetic algorithm-based approach to fast screening process for distributed-generation interconnections’, IEEE Trans Power Deliv., 2011, 26, (2), pp. 850858 (doi: 10.1109/TPWRD.2010.2093542).
    12. 12)
      • 16. Teng, J.H.: ‘Modelling distributed generations in three-phase distribution load flow’, IET Gener. Transm. Distrib., 2008, 2, (3), pp. 330340 (doi: 10.1049/iet-gtd:20070165).
    13. 13)
      • 8. Chen, T.H., Chen, M.S., Hwang, K.J., Kotas, P., Chebli, E.A.: ‘Distribution system power flow analysis-a rigid approach’, IEEE Trans Power Deliv., 1991, 6, (3), pp. 11461152 (doi: 10.1109/61.85860).
    14. 14)
      • 23. Tong, S.Q., Miu, K.N.: ‘A network-based distributed slack bus model for DGs in unbalanced power flow studies’, IEEE Trans. Power Syst., 2005, 20, (2), pp. 835842 (doi: 10.1109/TPWRS.2005.846056).
    15. 15)
      • 13. Eminoglu, U., Hocaoglu, M.H.: ‘A new power flow method for radial distribution systems including voltage dependent load models’, Electr. Power Syst. Res., 2005, 76, (1–3), pp. 106114 (doi: 10.1016/j.epsr.2005.05.008).
    16. 16)
      • 7. Ou, T.C.: ‘A novel unsymmetrical faults analysis for microgrid distribution systems’, Int. J. Electr. Power Energy Syst., 2012, 43, (1), pp. 10171024 (doi: 10.1016/j.ijepes.2012.05.012).
    17. 17)
      • 3. Peralta, J.A., de Leon, F., Mahseredjian, J.: ‘Unbalanced multiphase load-flow using a positive-sequence load-flow program’, IEEE Trans. Power Syst., 2008, 23, (2), pp. 469476 (doi: 10.1109/TPWRS.2008.920184).
    18. 18)
      • 5. Kamh, M.Z., Iravani, R.: ‘A unified three-phase power-flow analysis model for electronically coupled distributed energy resources’, IEEE Trans Power Deliv., 2011, 26, (2), pp. 899909 (doi: 10.1109/TPWRD.2010.2094627).
    19. 19)
      • 21. Effect of reduced voltage on the operation and efficicency of electrical loads: energy Systems Research Center, The University of Texas at Arilington, September1981. Report no.: EPRI Final Report EL-2036.
    20. 20)
      • 24. Khushalani, S., Schulz, N.: ‘Unbalanced distribution power flow with distributed generation’, Proc 2005/2006 IEEE/PES Trans. Distrib. Conf. Exposition, 2006, 1–3, pp. 301306.
    21. 21)
      • 2. Zhang, X.P., Chen, H.: ‘Asymmetrical three-phase load-flow study based on symmetrical component theory’, IEE Proc., Gener. Transm. Distrib., 1994, 141, (3), pp. 248252 (doi: 10.1049/ip-gtd:19949944).
    22. 22)
      • 11. Thukaram, D., Banda, H.M.W., Jerome, J.: ‘A robust three phase power flow algorithm for radial distribution systems’, Electr. Power Syst. Res., 1999, 50, (3), pp. 227236 (doi: 10.1016/S0378-7796(98)00150-3).
    23. 23)
      • 19. Chen, T.H., Pan, Q.Y., Yang, N.C.: ‘Modeling and analysis of a single-phase distribution transformer with midtap on the secondary side’, IEEE Trans Power Deliv., 2010, 25, (3), pp. 15801588 (doi: 10.1109/TPWRD.2010.2043545).
    24. 24)
      • 4. Kamh, M.Z., Iravani, R.: ‘Unbalanced model and power-flow analysis of microgrids and active distribution systems’, IEEE Trans Power Deliv., 2010, 25, (4), pp. 28512858 (doi: 10.1109/TPWRD.2010.2042825).
    25. 25)
      • 26. Vlachogiannis, J.G.: ‘Probabilistic constrained load flow considering integration of wind power generation and electric vehicles’, IEEE Trans. Power Syst., 2009, 24, (4), pp. 18081817 (doi: 10.1109/TPWRS.2009.2030420).
    26. 26)
      • 12. Ciric, R.M., Feltrin, A.P., Ochoa, L.F.: ‘Power flow in four-wire distribution networks - General approach’, IEEE Trans. Power Syst., 2003, 18, (4), pp. 12831290 (doi: 10.1109/TPWRS.2003.818597).
    27. 27)
      • 14. Moghaddas-Tafreshi, S.M., Mashhour, E.: ‘Distributed generation modeling for power flow studies and a three-phase unbalanced power flow solution for radial distribution systems considering distributed generation’, Electr. Power Syst. Res., 2009, 79, (4), pp. 680686 (doi: 10.1016/j.epsr.2008.10.003).
    28. 28)
      • 6. Lin, W.M., Ou, T.C.: ‘Unbalanced distribution network fault analysis with hybrid compensation’, IET Gener. Transm. Distrib., 2011, 5, (1), pp. 92100 (doi: 10.1049/iet-gtd.2008.0627).
    29. 29)
      • 17. Chen, T.H., Yang, N.C.: ‘Three-phase power-flow by direct Z, (BR) method for unbalanced radial distribution systems’, IET Gener. Transm. Distrib., 2009, 3, (10), pp. 903910 (doi: 10.1049/iet-gtd.2008.0616).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2012.0535
Loading

Related content

content/journals/10.1049/iet-gtd.2012.0535
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address