http://iet.metastore.ingenta.com
1887

Coordination of storage and generation in power system frequency control using an H approach

Coordination of storage and generation in power system frequency control using an H approach

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposes a novel H -based approach called advanced frequency control (AFC) to integrate storage into frequency control. The objective is to split the task of balancing frequency deviations introduced by renewable energy source (RES) and load variations according to the capabilities of storage and generators. Hence, via frequency dependent weighting functions, a so-called frequency separation objective is achieved: the conventional generators mainly balance the low-frequency components of the RES and load variations while the energy storage devices compensate the high-frequency components. First, a state-space structure-preserving model of the power system is derived, which is needed for the design of the controller. In order to enable the controller design for storage devices located at buses with no generators, a model for the frequency at such a bus is developed. Then, AFC controllers are synthesised through decentralised static output feedback to reduce the complexity in the practical implementation of such controllers. An existing linear matrix inequality algorithm is improved and employed to solve the involved H problem. Finally, the WECC 9-bus test system is used to verify the performance of the AFC design.

References

    1. 1)
      • 1. http://www.dsireusa.org/, ‘Database of state incentives for renewables and efficiency’, Accessed on August 2012.
        .
    2. 2)
      • J.P. Barton , D.G. Infield .
        2. Barton, J.P., Infield, D.G.: ‘Energy storage and its use with intermittent renewable energy’, IEEE Trans. Energy Convers., 2004, 19, (2), pp. 441448 (doi: 10.1109/TEC.2003.822305).
        . IEEE Trans. Energy Convers. , 2 , 441 - 448
    3. 3)
      • M. Beaudin , H. Zareipour , A. Schellenberglabe , W. Rosehart .
        3. Beaudin, M., Zareipour, H., Schellenberglabe, A., Rosehart, W.: ‘Energy storage for mitigating the variability of renewable electricity sources: An updated review’, Energy Sust. Dev., 2010, 14, (4), pp. 302314 (doi: 10.1016/j.esd.2010.09.007).
        . Energy Sust. Dev. , 4 , 302 - 314
    4. 4)
      • V. Vittal .
        4. Vittal, V.: ‘The impact of renewable resources on the performance and reliability of the electricity grid’, The Bridge, 2010, 40, (1), pp. 512.
        . The Bridge , 1 , 5 - 12
    5. 5)
      • R. Fioravanti , V. Khoi , W. Stadlin .
        5. Fioravanti, R., Khoi, V., Stadlin, W.: ‘Large-scale solutions’, IEEE Power Energy Mag., 2009, 7, (4), pp. 4857 (doi: 10.1109/MPE.2009.932869).
        . IEEE Power Energy Mag. , 4 , 48 - 57
    6. 6)
      • S. Chu , A. Majumdar .
        6. Chu, S., Majumdar, A.: ‘Opportunities and challenges for a sustainable energy future’, Nature, 2012, 488, (7411), pp. 294303 (doi: 10.1038/nature11475).
        . Nature , 7411 , 294 - 303
    7. 7)
      • J.M. Carrasco , L.G. Franquelo , J.T. Bialasiewicz .
        7. Carrasco, J.M., Franquelo, L.G., Bialasiewicz, J.T., et al: ‘Power-electronic systems for the grid integration of renewable energy sources: A survey’, IEEE Trans. Ind. Electron., 2006, 53, (4), pp. 10021016 (doi: 10.1109/TIE.2006.878356).
        . IEEE Trans. Ind. Electron. , 4 , 1002 - 1016
    8. 8)
      • P. Kundur . (1994)
        8. Kundur, P.: ‘Power system stability and control’ (McGraw-Hill, USA, 1994).
        .
    9. 9)
      • M.L. Lazarewicz , T.M. Ryan .
        9. Lazarewicz, M.L., Ryan, T.M.: ‘Integration of flywheel-based energy storage for frequency regulation in deregulated markets’. Proc. IEEE Power and Energy Society General Meeting, 2010.
        . Proc. IEEE Power and Energy Society General Meeting
    10. 10)
      • J. Cleary , M.L. Lazarewicz , L. Nelson , R. Rounds , J. Arsenault .
        10. Cleary, J., Lazarewicz, M.L., Nelson, L., Rounds, R., Arsenault, J.: ‘Interconnection study: 5MW of Beacon Power flywheels on 23 kV line – Tyngsboro, MA’. Proc. Conf. on Innovative Technologies for an Efficient and Reliable Electricity Supply, 2010.
        . Proc. Conf. on Innovative Technologies for an Efficient and Reliable Electricity Supply
    11. 11)
      • D. Lew , G. Brinkman , N. Kumar , P. Besuner , D. Agan , S. Lefton .
        11. Lew, D., Brinkman, G., Kumar, N., Besuner, P., Agan, D., Lefton, S.: ‘Impacts of wind and solar on fossil-fueled generators’. Proc. IEEE Power and Energy Society General Meeting, 2012.
        . Proc. IEEE Power and Energy Society General Meeting
    12. 12)
      • K. Zhou , J.C. Doyle , K. Glover . (1995)
        12. Zhou, K., Doyle, J.C., Glover, K.: ‘Robust and optimal control’ (Prentice-Hall, 1995).
        .
    13. 13)
      • D. Rerkpreedapong , A. Hasanovic , A. Feliachi .
        13. Rerkpreedapong, D., Hasanovic, A., Feliachi, A.: ‘Robust load frequency control using genetic algorithms and linear matrix inequalities’, IEEE Trans. Power Syst., 2003, 18, (2), pp. 855861 (doi: 10.1109/TPWRS.2003.811005).
        . IEEE Trans. Power Syst. , 2 , 855 - 861
    14. 14)
      • H. Bevrani , Y. Mitani , K. Tsuji .
        14. Bevrani, H., Mitani, Y., Tsuji, K.: ‘Robust decentralised load-frequency control using an iterative linear matrix inequalities algorithm’, IEE Gener. Transm. Distrib., 2004, 151, (3), pp. 347354 (doi: 10.1049/ip-gtd:20040493).
        . IEE Gener. Transm. Distrib. , 3 , 347 - 354
    15. 15)
      • J. Liu , B.H. Krogh , B.E. Ydstie .
        15. Liu, J., Krogh, B.H., Ydstie, B.E.: ‘Decentralized robust frequency control for power systems subject to wind power variability’. Proc. IEEE Power and Energy Society General Meeting, 2011.
        . Proc. IEEE Power and Energy Society General Meeting
    16. 16)
      • S. Dechanupaprittha , K. Hongesombut , M. Watanabe , Y. Mitani , I. Ngamroo .
        16. Dechanupaprittha, S., Hongesombut, K., Watanabe, M., Mitani, Y., Ngamroo, I.: ‘Stabilization of tie-line power flow by robust SMES controller for interconnected power system with wind farms’, IEEE Trans. Appl. Supercond., 2007, 17, (2), pp. 23652368 (doi: 10.1109/TASC.2007.897846).
        . IEEE Trans. Appl. Supercond. , 2 , 2365 - 2368
    17. 17)
      • B.C. Pal , A.H. Coonick , I.M. Jaimoukha , H. El-Zobaidi .
        17. Pal, B.C., Coonick, A.H., Jaimoukha, I.M., El-Zobaidi, H.: ‘A linear matrix inequality approach to robust damping control design in power systems with superconducting magnetic energy storage device’, IEEE Trans. Power Syst., 2000, 15, (1), pp. 356362 (doi: 10.1109/59.852144).
        . IEEE Trans. Power Syst. , 1 , 356 - 362
    18. 18)
      • R. de Castro , R.E. Araujo , J.P.F. Trovao , P.G. Pereirinha , P. Melo , D. Freitas .
        18. de Castro, R., Araujo, R.E., Trovao, J.P.F., Pereirinha, P.G., Melo, P., Freitas, D.: ‘Robust DC-link control in EVs with multiple energy storage systems’, IEEE Trans. Veh. Technol., 2012, 61, (8), pp. 35533565 (doi: 10.1109/TVT.2012.2208772).
        . IEEE Trans. Veh. Technol. , 8 , 3553 - 3565
    19. 19)
      • F. Liu , S. Mei , D. Xia , Y. Ma , X. Jiang , Q. Lu .
        19. Liu, F., Mei, S., Xia, D., Ma, Y., Jiang, X., Lu, Q.: ‘Experimental evaluation of nonlinear robust control for SMES to improve the transient stability of power systems’, IEEE Trans. Energy Convers., 2004, 19, (4), pp. 774782 (doi: 10.1109/TEC.2004.827703).
        . IEEE Trans. Energy Convers. , 4 , 774 - 782
    20. 20)
      • T. Goya , E. Omine , Y. Kinjyo .
        20. Goya, T., Omine, E., Kinjyo, Y., et al: ‘Frequency control in isolated island by using parallel operated battery systems applying H infinity control theory based on droop characteristics’, IET Renew. Power Gener., 2011, 5, (2), pp. 160166 (doi: 10.1049/iet-rpg.2010.0083).
        . IET Renew. Power Gener. , 2 , 160 - 166
    21. 21)
      • M. Chawla , R. Naik , R. Burra , H. Wiegman .
        21. Chawla, M., Naik, R., Burra, R., Wiegman, H.: ‘Utility energy storage life degradation estimation method’. Proc. Conf. on Innovative Technologies for an Efficient and Reliable Electricity Supply, 2010.
        . Proc. Conf. on Innovative Technologies for an Efficient and Reliable Electricity Supply
    22. 22)
      • G. Lalor , J. Ritchie , S. Rourke , D. Flynn , M.J. O'Malley .
        22. Lalor, G., Ritchie, J., Rourke, S., Flynn, D., O'Malley, M.J.: ‘Dynamic frequency control with increasing wind generation’. Proc. IEEE Power and Energy Society General Meeting, 2004.
        . Proc. IEEE Power and Energy Society General Meeting
    23. 23)
      • J. Nutaro , V. Protopopescu .
        23. Nutaro, J., Protopopescu, V.: ‘Calculating frequency at loads in simulations of electro-mechanical transients’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 233240 (doi: 10.1109/TSG.2011.2173359).
        . IEEE Trans. Smart Grid , 1 , 233 - 240
    24. 24)
      • K. Zhou , J.C. Doyle . (1998)
        24. Zhou, K., Doyle, J.C.: ‘Essentials of robust control’ (Prentice Hall, 1998).
        .
    25. 25)
      • S. Skogestad , I. Postlethwaite . (2005)
        25. Skogestad, S., Postlethwaite, I.: ‘Multivariable feedback control: analysis and design’ (John Wiley & Sons, 2nd edition, 2005).
        .
    26. 26)
      • D. Zhu , G. Hug-Glanzmann .
        26. Zhu, D., Hug-Glanzmann, G.: ‘Robust control design for integration of energy storage into frequency regulation’. Proc. IEEE PES ISGT Europe, 2012.
        . Proc. IEEE PES ISGT Europe
    27. 27)
      • Y.Y. Cao , J. Lam , Y.X. Sun .
        27. Cao, Y.Y., Lam, J., Sun, Y.X.: ‘Static output feedback stabilization: an ILMI approach’, Automatica, 1998, 34, (12), pp. 16411645 (doi: 10.1016/S0005-1098(98)80021-6).
        . Automatica , 12 , 1641 - 1645
    28. 28)
      • P. Gahinet , P. Apkarian .
        28. Gahinet, P., Apkarian, P.: ‘A linear matrix inequality approach to H infinity control’, Int. J. Robust Nonlinear Control, 1994, 4, pp. 421448 (doi: 10.1002/rnc.4590040403).
        . Int. J. Robust Nonlinear Control , 421 - 448
    29. 29)
      • M. Grant , S. Boyd .
        29. Grant, M., Boyd, S.: ‘CVX: Matlab software for disciplined convex programming’, 2011.
        .
    30. 30)
      • P.M. Anderson , A.A. Fouad . (2003)
        30. Anderson, P.M., Fouad, A.A.: ‘Power system control and stability’ (Wiley IEEE Press, 2003, 2nd edn.).
        .
    31. 31)
      • J. Liu .
        31. Liu, J.: ‘Decentralized robust frequency control for power systems subject to wind power variability’, PhD thesis, Carnegie Mellon University, 2011.
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2012.0522
Loading

Related content

content/journals/10.1049/iet-gtd.2012.0522
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address