access icon free Study on the field effects under reduced-scale DC/AC hybrid transmission lines

The possibility for DC and AC power lines running parallel to each other, sharing the same right-of-way or even the same tower has been increased in China. In this work, the coupled DC and AC electric field effects are analysed with a reduced-scale model. Improved measuring methods are proposed to obtain both the DC and AC components of the ground level electric field and ion current density. Depressing effects of the AC field on the ground level DC field and of the DC field on the ground level AC field are observed when the applied DC voltage exceeds the onset value. The mechanism of the influences of AC power lines on the nearby DC power lines is analysed with experiments and simulations. Both the influence of the AC field on the corona onset on the surfaces of DC conductors and the influence of the AC field on the motion of the space charges are proved to be important in the field effects under the hybrid lines.

Inspec keywords: space charge; power transmission lines; corona; HVAC; conductors (electric); HVDC power transmission

Other keywords: reduced-scale model; DC electric field effect; reduced-scale DC-AC hybrid power transmission lines; ground level electric field; DC conductor; corona; China; ion current density; space charge; tower; AC electric field effect

Subjects: Power transmission lines and cables; Gas discharges; d.c. transmission

References

    1. 1)
      • 1. Huang, D.C., Shu, Y.B., Ruan, J.J., Hu, Y.: ‘Ultra high voltage transmission in China developments, current status and future prospects’, Proc. IEEE, 2009, 97, (3), pp. 555583 (doi: 10.1109/JPROC.2009.2013613).
    2. 2)
      • 25. Peek, F.W.: ‘Law of corona and dielectric strength of air-I’, Trans. AIEE, 1911, 30, pp. 1889.
    3. 3)
      • 2. Tang, J., Zeng, R., Ma, H.B., et al: ‘Analysis of electromagnetic interference on DC line from parallel AC line in close proximity’, IEEE Trans. Power Deliv., 2007, 22, (4), pp. 24012408 (doi: 10.1109/TPWRD.2007.905334).
    4. 4)
      • 3. Kizilcay, M., Agdemir, A., Losing, M.: ‘Interaction of a HVDC system with 400-kV AC systems on the same tower’. Proc. Int. Conf. Power Systems Transients, Kyoto, Japan, June 2009, pp. 18.
    5. 5)
      • 18. Sebo, S.A., Kasten, D.G., Zhao, T., Zaffanella, L.E., Clairmont, B.A., Zelingher, S.: ‘Development of reduced-scale line modeling for the study of hybrid corona’. Proc. Conf. Electrical Insulation and Dielectric Phenomena, Annual Report, Pocono Manor, USA, October 1993, pp. 538543.
    6. 6)
      • 13. J-Fatokun, F.O., Jayaratne, E.R., Morawska, L., Rachman, R., Birtwhistle, D., Mengersen, K.: ‘Characterization of the atmospheric electrical environment near a corona ion-emitting source’, Atmos. Environ., 2008, 42, (7), pp. 16071616 (doi: 10.1016/j.atmosenv.2007.10.090).
    7. 7)
      • 16. Kasten, D.G., Sebo, S.A., Zhao, T., Zaffanella, L.E., Clairmont, B.A.: ‘Corona tests on reduced-scale two-conductor hybrid lines’. Proc. Conf. Electrical Insulation and Dielectric Phenomena, Annual Report, Pocono Manor, USA, October 1993, pp. 624629.
    8. 8)
      • 29. Mcknight, R.H., Kotter, F.R., Misakian, M.: ‘Measurement ion current density at ground level in the vicinity of high voltage DC transmission lines’, IEEE Trans. Power Appar. Syst., 1983, PAS-102, (4), pp. 934941 (doi: 10.1109/TPAS.1983.317806).
    9. 9)
      • 10. Comber, M.G., Johnson, G.B.: ‘HVDC field and ion effects research at project UHV: results of electric field and ion current measurements’, IEEE Trans. Power Appar. Syst., 1982, PAS-101, (7), pp. 19982006 (doi: 10.1109/TPAS.1982.317447).
    10. 10)
      • 8. Yu, M., Kuffel, E., Polk, J.: ‘A new algorithm for calculating HVDC corona with the presence of wind’, IEEE Trans. Magn., 1992, 28, (5), pp. 28022804 (doi: 10.1109/20.179632).
    11. 11)
      • 9. Carter, P.J., Johnson, G.B.: ‘Space charge measurements downwind from a monopolar 500 kV HVDC test line’, IEEE Trans. Power Deliv., 1988, 3, (4), pp. 20562063 (doi: 10.1109/61.194017).
    12. 12)
      • 11. Bracken, T.D., Senior, R.S., Bailey, W.H.: ‘DC electric fields from corona-generated space charge near AC transmission lines’, IEEE Trans. Power Deliv., 2005, 20, (2), pp. 16921702 (doi: 10.1109/TPWRD.2004.834309).
    13. 13)
      • 21. Rickard, D.A., Elayyan, H.S.B., Haddad, A., Waters, R.T.: ‘Corona space charge development for combined alternating and direct voltage excitation’, IEE Proc. Sci. Meas. Technol., 1994, 141, (6), pp. 441448 (doi: 10.1049/ip-smt:19941341).
    14. 14)
      • 14. Matthews, J.C., Henshaw, D.L.: ‘Measurements of atmospheric potential gradient fluctuations caused by corona ions near high voltage power lines’, J. Electrostat., 2009, 67, (2–3), pp. 488491 (doi: 10.1016/j.elstat.2009.01.051).
    15. 15)
      • 5. Barnes, F.S., Greenebaum, B.: ‘Bioengineering and biophysical aspects of electromagnetic fields’ (CRC Press, Boca Raton, USA, 2007).
    16. 16)
      • 26. Maruvada, P.S., Dallaire, R.D., Pedneault, R.: ‘Development of field-mill instruments for ground-level and above-ground electric field measurement under HVDC transmission lines’, IEEE Trans. Power Appar. Syst., 1983, PAS-102, (3), pp. 738744 (doi: 10.1109/TPAS.1983.318035).
    17. 17)
      • 23. Amano, Y., Sunaga, Y.: ‘Study on reduction in electric field, charged voltage, ion current and ion density under HVDC transmission lines by parallel shield wires’, IEEE Trans. Power Deliv., 1989, 4, (2), pp. 13511359 (doi: 10.1109/61.25622).
    18. 18)
      • 6. Jaiswa, V., Thomas, M.J.: ‘Finite element modeling of ionized field quantities around a monopolar HVDC transmission line’, J. Phys. D Appl. Phys., 2003, 36, (23), pp. 30893094 (doi: 10.1088/0022-3727/36/23/034).
    19. 19)
      • 20. Abdel-Salam, M., El-Mohandes, M.T., El-Kishky, H.: ‘Electric field around parallel DC and multi-phase AC transmission lines’, IEEE Trans. Electr. Insul., 1990, 25, (6), pp. 11451152 (doi: 10.1109/14.64501).
    20. 20)
      • 24. Johnson, G.B.: ‘Degree of corona saturation for HVDC transmission lines’, IEEE Trans. Power Deliv., 1990, 5, (2), pp. 695707 (doi: 10.1109/61.53072).
    21. 21)
      • 27. Renno, N.O., Kok, J.F., Kirkham, H., Rogacki, S.: ‘A miniature sensor for electrical field measurements in dusty planetary atmospheres’, Electrost. J. Phys. Conf. Ser., 2007, 142, (1), pp. 16.
    22. 22)
      • 7. Anzivion, L.D.: ‘HVDC transmission line reference book (EPRI report)’ (EPRI, 1993).
    23. 23)
      • 28. Wijeweera, G., Bahreyni, B., Shafai, C., Rajapakse, A., Swatek, D.R.: ‘Micromachined electric-field sensor to measure AC and DC fields in power systems’, IEEE Trans. Power Deliv., 2009, 24, (3), pp. 988995 (doi: 10.1109/TPWRD.2008.2008427).
    24. 24)
      • 12. Jayaratne, E.R., J-Fatokun, F.O., Morawska, L.: ‘Air ion concentrations under overhead high-voltage transmission lines’, Atmos. Environ., 2008, 42, (8), pp. 18461856 (doi: 10.1016/j.atmosenv.2007.11.017).
    25. 25)
      • 19. Clairmont, B.A., Johnson, G.B., Zaffanella, L.E.: ‘The effect of HVAC-HVDC line separation in a hybrid corridor’, IEEE Trans. Power Deliv., 1989, 4, (2), pp. 13381350 (doi: 10.1109/61.25621).
    26. 26)
      • 22. Li, W., Zhang, B., He, J., Zeng, R., Li, X., Wang, Q.: ‘Calculation of the ion flow field of AC–DC hybrid transmission lines’, IET Gener. Transm. Distrib., 2009, 3, (10), pp. 911918 (doi: 10.1049/iet-gtd.2009.0020).
    27. 27)
      • 17. Zhao, T., Illan, J., Cohol, J.M., Hinton, R.D., Sebo, S.A., Kasten, D.G.: ‘Design, construction and utilization of a new reduced-scale model for the study of hybrid (AC and DC) line corona’. Proc. Conf. Transmission and Distribution, IEEE Power Engineering Society, Chicago, USA, April 1994, pp. 239245.
    28. 28)
      • 15. Chartier, V.L., Sarkinen, S.H., Stearns, R.D., Burns, A.L.: ‘Investigation of corona and field effects of AC/DC hybrid transmission lines’, IEEE Trans. Power Appar. Syst., 1981, PAS-100, (1), pp. 7280 (doi: 10.1109/TPAS.1981.316889).
    29. 29)
      • 4. Lu, T.B., Zhao, S.T., Cui, X.: ‘Simulation of electromagnetic induction on DC transmission lines from parallel AC transmission lines’. Proc. Int. Conf. Electromagnetic Compatibility, Qingdao, China, October 2007, pp. 114117.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2012.0407
Loading

Related content

content/journals/10.1049/iet-gtd.2012.0407
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading