Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Parameter estimation of drive system in a fixed-speed wind turbine by utilising turbulence excitations

Wind speed varies continuously. The turbulent winds act as a constant low-level excitation to wind turbines. Assuming turbulence is stationary over an analysis window, the parameters of drive system in a fixed-speed wind turbine are estimated in this study. First, simulations are performed when the wind turbine generator is under turbulence excitations and the spectral contents of the response data show that the induction generator dynamics, which are much faster than the drive system transients, can be neglected in the estimation of drive system parameters. Second, the parameter identifiability of drive system is studied and a new sensitivity index is proposed to qualify the effects of individual parameter on the dynamics of the drive system. Finally, the Levenberg–Marquardt parameter estimation method is applied to identify drive system parameters. Estimation results show that most parameters estimated agree well with the actual values and the effectiveness of this parameter estimation method is validated.

References

    1. 1)
      • 3. Pedersen, J.K., Helgelsen-Pedersen, K.O., Kjølstad Poulsen, N., Akhmatov, V., Hejde Nielsen, A.: ‘Contribution to a dynamic wind turbine model validation from a wind farm islanding experiment’, Electr. Power Syst. Res., 2003, 64, pp. 4151 (doi: 10.1016/S0378-7796(02)00144-X).
    2. 2)
      • 10. Van der Hoven, I.: ‘Power spectrum of horizontal wind speed in the frequency range from 0.0007 to 900 cycles per hour’, J. Atmos. Sci., 1957, 14, (2), pp. 160164.
    3. 3)
      • 7. González-Longatt, F., Regulski, P., Wall, P., Terzija, W.: ‘Procedure for estimation of equivalent model parameters for a wind farm using post-disturbance on-line measurement data’. Proc. IEEE PES Int. Conf. and Exhibition on Innovative Smart Grid Technologies, Manchester, UK, December 2011, pp. 17.
    4. 4)
      • 2. Trilla, L., Gomis-Bellmunt, O., Junyent-Ferré, A., Mata, M., Sánchez Navarro, J., Sudrià-Andreu, A.: ‘Modeling and validation of DFIG 3-MW wind turbine using field test data of balanced and unbalanced voltage sags’, IEEE Trans. Power Syst., 2011, 2, (4), pp. 509519.
    5. 5)
      • 25. Mann, J.: ‘Wind field simulation’, Probabilistic Eng. Mech., 1998, 13, (4), pp. 269282 (doi: 10.1016/S0266-8920(97)00036-2).
    6. 6)
      • 6. Seman, S., Niiranen, J., Virtanen, R., Matsinen, J.P.: ‘Low voltage ride-through analysis of 2 MW DFIG wind turbine-grid code compliance validations’. Proc. IEEE PES General Meeting, Pittsburgh, PA, July 2008, pp. 16.
    7. 7)
      • 17. Kayikci, M., Milanovic, J.V.: ‘Dynamic contribution of DFIG-based wind plants to system frequency disturbances’, IEEE Trans. Power Syst., 2009, 24, (2), pp. 859867 (doi: 10.1109/TPWRS.2009.2016062).
    8. 8)
      • 8. Azad, S.P., Tate, J.E.: ‘Parameter estimation of doubly fed induction generator driven by wind Turbine’. Proc. IEEE PES on Power Systems Conf. and Exposition, Toronto, Canada, March 2011, pp. 18.
    9. 9)
      • 16. Littler, T., Fox, B., Flynn, D.: ‘Measurement-based estimation of wind farm inertia’. Proc. IEEE Conf. on Power Technology, Petersburg, Russia, June 2005, pp. 15.
    10. 10)
      • 4. Brochu, J., Larose, C., Gagnon, R.: ‘Validation of single- and multiple-machine equivalents for modeling wind power plants’, IEEE Trans. Energy Convers., 2010, 26, (2), pp. 532541 (doi: 10.1109/TEC.2010.2087337).
    11. 11)
      • 18. Kennedy, J.M., Fox, B., Littler, T., Flynn, D.: ‘Validation of fixed speed induction generator models for inertial response using wind farm measurements’, IEEE Trans. Power Syst., 2011, 26, (3), pp. 14541461 (doi: 10.1109/TPWRS.2010.2081385).
    12. 12)
      • 5. Langlois, C.E., Lefebvre, D., Dubé, L., Gagnon, R. : ‘Developing a type-III wind turbine model for stability studies of the Hydro-Quebec network’. Proc. Eighth Int. Workshop Large-Scale Integration of Wind Power Into Power Systems, Bremen, Germany, October 2009, pp. 674679.
    13. 13)
      • 14. Martins, M., Perdana, A., Ledesma, P., Agneholm, E., Carlson, O.: ‘Validation of fixed speed wind turbine dynamic models with measured data’, Renew. Energy, 2007, 32, (8), pp. 13011316 (doi: 10.1016/j.renene.2006.06.007).
    14. 14)
      • 29. Yang, F.S.: ‘Random signal analysis’ (Qinghua University Press, Beijing, 1990), pp. 6064.
    15. 15)
      • 20. Novak, P., Jovik, I., Schmidtbauer, B.: ‘Modeling and identification of drive-system dynamics in a variable-speed wind turbine’. Proc. IEEE Conf. on Control Applications, Glasgow, UK, 1994, pp.233238.
    16. 16)
      • 12. Salman, S.K., Teo, A.L.J.: ‘Improvement of fault clearing time of wind farm using reactive power compensation’. Proc. IEEE Conf. Power Technology, Porto, Portugal, September 2001, vol. 2, pp. 611.
    17. 17)
      • 22. Madsen, K., Nielsen, H.B., Tingleff, O.: ‘Methods for non-linear least squares problems’ (Technical University of Denmark, 2004, 2nd edn.), pp. 2029.
    18. 18)
      • 26. Wasynzuk, O., Man, D.T., Sullivan, J.P.: ‘Dynamic behavior of a class of wind turbines generators during random wind fluctuations’, IEEE Power Eng. Rev., 1981, (6), pp. 4748 (doi: 10.1109/MPER.1981.5511593).
    19. 19)
      • 19. González-Longatt, F., Regulski, P., Wall, P., Terzija, W.: ‘Fixed speed wind generator model parameter estimation using improved particle swarm optimization and system frequency disturbances’. Proc. IET Conf. Renewable Power Generation, Edinburgh, UK, July 2011, pp. 16.
    20. 20)
      • 15. Perdana, A., Uski-Joutsenvuo, , Carlson, S.O., LemstrÄom, B.: ‘Comparison of an aggregated model of a wind farm consisting of fixed-speed wind turbines with field measurement’, Wind Energy, 2008, 11, (1), pp. 1327 (doi: 10.1002/we.251).
    21. 21)
      • 24. Von Karman, T.: ‘Progress in the statistical theory of turbulence’, Proc. Natl. Akad. Sci., 1948, 34, pp. 530539 (doi: 10.1073/pnas.34.11.530).
    22. 22)
      • 13. Salman, S.K., Teo, A.L.J.: ‘Windmill modeling consideration and factors influencing the stability of a grid-connected wind power-based embedded generator’, IEEE Trans. Power Syst., 2003, 18, (2), pp. 793802 (doi: 10.1109/TPWRS.2003.811180).
    23. 23)
      • 27. Monroy, A., Alvarez-Icaza, L.: ‘Real-time identification of wind turbine rotor power coefficient’. Proc. IEEE Conf. on Decision and Control, San Diego, USA, December 2006, pp. 36903695.
    24. 24)
      • 11. Akhmatov, V., Knudsen, H., Nielsen, A.: ‘Advanced simulation of windmills in the electrical power supply’, Electr. Power Energy Syst., 2000, 22, (6), pp. 421434 (doi: 10.1016/S0142-0615(00)00007-7).
    25. 25)
      • 23. Kaimal, J.C., Wyngaard, J.C., Izumi, Y., Coté, O.R.: ‘Spectral characteristics of surface layer turbulence’, J. Royal Meteorol. Soc., 1972, 98, (417), pp. 563589 (doi: 10.1002/qj.49709841707).
    26. 26)
      • 1. Ad Hoc Task Force on Wind Generation Model Validation of the IEEE PES Working Group on Dynamic Performance of Wind Power Generation of the IEEE PES Power System Stability Controls Subcommittee of the IEEE PES Power System Dynamic Performance Committee: ‘Model validation for wind turbine generator models’, IEEE Trans. Power Syst., 2011, 26, (3), pp. 17691782 (doi: 10.1109/TPWRS.2010.2092794).
    27. 27)
      • 21. Rose, J., Hiskens, I.A.: ‘Estimating wind turbine parameters and qualifying their effects on dynamic behavior’. Proc. IEEE General Meeting, Pennsylvania, USA, July 2008, pp. 17.
    28. 28)
      • 9. Nichita, C., Luca, D., Dakyo, B., Ceanga, E.: ‘Large band simulation of the wind speed for real time wind turbine simulators’, IEEE Trans. Energy Convers., 2002, 17, (4), pp. 523529 (doi: 10.1109/TEC.2002.805216).
    29. 29)
      • 28. Kélouwani, S., Agbossou, K.: ‘Nonlinear model identification of wind turbine with a neural network’, IEEE Trans. Energy Convers., 2004, 19, (3), pp. 607612 (doi: 10.1109/TEC.2004.827715).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2012.0336
Loading

Related content

content/journals/10.1049/iet-gtd.2012.0336
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address