access icon free Multistage expansion planning for distribution networks including unit commitment

In this study, a multistage expansion and unit commitment (UC) planning for distribution networks using artificial bee colony (ABC) is presented. A dynamic model for expansion considers installation of new distributed generation units, expansion of pre-installed generating units’ capacities, rewiring and addition of new load points. The expansion plane is carried out in three stages. In each stage, an hourly-day-ahead UC schedule is determined over the course of the stage period. The proposed algorithm uses the ABC to obtain a feasible commitment schedule for the generating units installed. An economical dispatch of these units along with load shedding is then carried out in each stage period to satisfy the system's equality and inequality constraints. The proposed algorithm is applied to different test systems to verify its efficiency.

Inspec keywords: power generation dispatch; distributed power generation; power generation scheduling; power distribution planning; load shedding; dynamic programming

Other keywords: unit commitment; ABC; economical dispatch; hourly-day-ahead UC schedule; feasible commitment schedule; stage period; distribution networks; artificial bee colony; multistage expansion planning; load shedding; preinstalled generating unit capacities; load points; distributed generation units

Subjects: Power system planning and layout; Power system management, operation and economics; Distributed power generation; Distribution networks; Optimisation techniques

References

    1. 1)
      • 18. Abookazemi, K., Ahmad, H., Tavakolpour, A., Hassan, M.Y.: ‘Unit commitment solution using an optimized genetic system’, Int. J. Electr. Power Energy Syst., 2011, 33, (4), pp. 969975 (doi: 10.1016/j.ijepes.2011.01.009).
    2. 2)
      • 2. Kuwabara, H., Nara, K.: ‘Multi-year and multi-state distribution systems expansion planning by multi-state branch exchange’, IEEE Trans. Power Syst., 1997, 12, (1), pp. 457463 (doi: 10.1109/61.568271).
    3. 3)
      • 17. Wang, C., Shahidehpour, M.: ‘A decomposition approach to non-linear multiarea generation scheduling with tie-line constraints using expert systems’, IEEE Trans. Power Syst., 1992, 7, (4), pp. 14091418 (doi: 10.1109/59.207362).
    4. 4)
      • 11. Chandrasekarana, K., Hemamalinib, S., Simona, S.P., Padhyc, N.P.: ‘Thermal unit commitment using binary/real coded artificial bee colony algorithm’, Int. J. Electr. Power Syst. Res., 2012, 84, pp. 109119 (doi: 10.1016/j.epsr.2011.09.022).
    5. 5)
      • 23. Simon, S.P., Padhy, N.P., Anand, R.S.: ‘An ant colony system approach for unit commitment problem’, Int. J. Electr. Power Energy Syst., 2006, 28, (5), pp. 315323 (doi: 10.1016/j.ijepes.2005.12.004).
    6. 6)
      • 7. Miranda, V., Ranito, J.V., Proença, L.M.: ‘Genetic algorithm in optimal multistage distribution network planning’, IEEE Trans. Power Syst., 1994, 9, (4), pp. 19271933 (doi: 10.1109/59.331452).
    7. 7)
      • 27. El-Zonkoly, A., Saad, M., Khalil, R.: ‘Optimal intentional islanding of distribution systems with DG using CLPSO’. Proc. MELECON2012, Tunisia, 2012, pp. 540543.
    8. 8)
      • 9. Chandramohan, S., Atturulu, N., Devi, R.P.K., Venkatesh, B.: ‘Operating cost minimization of a radial distribution system in a deregulated electricity market through reconfiguration using NSGA method’, Int. J. Electr. Power Energy Syst., 2010, 32, (2), pp. 126132 (doi: 10.1016/j.ijepes.2009.06.023).
    9. 9)
      • 28. Deeb, N., Shahidehpour, S.: ‘Cross decomposition for multi-area optimal reactive power planning’, IEEE Trans. Power Syst., 1993, 8, (4), pp. 15391544 (doi: 10.1109/59.260957).
    10. 10)
      • 14. Carrion, M., Arroyo, J.: ‘A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem’, IEEE Trans. Power Syst., 2006, 21, (3), pp. 13711378 (doi: 10.1109/TPWRS.2006.876672).
    11. 11)
      • 26. Tsai, P., Pan, J., Liao, B., Chu, S.: ‘Enhanced artificial bee colony optimization’, Int. J Innov. Comput. Inf. Control, 2009, 5, (12), pp. 112.
    12. 12)
      • 5. Schweickardt, G., Miranda, V.: ‘A two-stage planning and control model toward economically adapted power distribution systems using analytical hierarchy processes and fuzzy optimization’, Int. J. Electr. Power Energy Syst., 2009, 31, (6), pp. 277284 (doi: 10.1016/j.ijepes.2009.03.003).
    13. 13)
      • 20. Rajan, C.: ‘Hybridizing evolutionary programming, simulated annealing and Tabu search method to solve the unit commitment problem’, J Electr. Eng., 2010, 10, (1), pp. 18.
    14. 14)
      • 15. Li, T., Shahidehpour, M.: ‘Price-based unit commitment: a case of Lagrangian relaxation versus mixed integer programming’, IEEE Trans. Power Syst., 2005, 20, (4), pp. 20152025 (doi: 10.1109/TPWRS.2005.857391).
    15. 15)
      • 13. Synder, W.L.: ‘Dynamic programming approach to unit commitment’, IEEE Trans. Power Syst., 1987, 2, (2), pp. 339350 (doi: 10.1109/TPWRS.1987.4335130).
    16. 16)
      • 3. Quintana, V.H., Temraz, H.K., Hipel, W.: ‘Two-state power system distribution planning algorithm’, IEE Gener. Transm. Distrib., 1993, 104, (1), pp. 1729 (doi: 10.1049/ip-c.1993.0004).
    17. 17)
      • 22. Saber, A.Y., Senjyu, T., Yona, A., Funabashi, T.: ‘Unit commitment computation by fuzzy adaptive particle swarm optimization’, IEE Gener. Transm. Distrib., 2007, 1, (3), pp. 456465 (doi: 10.1049/iet-gtd:20060252).
    18. 18)
      • 30. El-Zonkoly, A.M.: ‘Power system single step restoration incorporating cold load pickup aided by distributed generation’, Int. J. Electr. Power Energy Syst., 2012, 35, (1), pp. 186193 (doi: 10.1016/j.ijepes.2011.10.012).
    19. 19)
      • 29. Kumar, V., Kumar, H.C.R., Gupta, I., Gupta, H.O.: ‘DG integrated approach for service restoration under cold load pickup’, IEEE Trans. Power Deliv., 2010, 25, (1), pp. 398406 (doi: 10.1109/TPWRD.2009.2033969).
    20. 20)
      • 21. Mantawy, A.H., Abdel-Magid, Y.L., Selim, S.Z.: ‘Unit commitment by Tabu search’, IEE Proc. Gener. Transm. Distrib., 1998, 145, (1), pp. 5664 (doi: 10.1049/ip-gtd:19981681).
    21. 21)
      • 24. Karaboga, D.: ‘An idea based on honey bee swarm for numerical optimization’, Technical report TR06, Department of Computer Engineering, Erciyes University, Kayseri, Turkey, 2005.
    22. 22)
      • 8. Skok, M., Krajcar, S., Skrlec, D.: ‘Long term multi-stage planning of open loop distribution networks under uncertainty’. Proc. Power Systems and Computers Conf., Liege, 2005, pp. 18.
    23. 23)
      • 12. Senjyu, T., Shimabukuro, K., Uezato, K., Funabashi, T.: ‘A fast technique for unit commitment problem by extended priority list’, IEEE Trans. Power Syst., 2003, 18, (2), pp. 882888 (doi: 10.1109/TPWRS.2003.811000).
    24. 24)
      • 6. Khalesi, N., Rezaei, N., Haghifam, M.R.: ‘DG allocation with application of dynamic programming for loss reduction and reliability improvement’, Int. J. Electr. Power Energy Syst., 2011, 33, (2), pp. 288295 (doi: 10.1016/j.ijepes.2010.08.024).
    25. 25)
      • 10. Lopez, J.A., Ceciliano-Meza, J.L., Moya, I.G., Gomez, R.N.: ‘A MIQCP formulation to solve the unit commitment problem for large-scale power systems’, Int. J. Electr. Power Energy Syst., 2012, 36, (1), pp. 6875 (doi: 10.1016/j.ijepes.2011.10.025).
    26. 26)
      • 4. Rosado, R.I.J., Gonen, T.: ‘Pseudo-dynamic planning for expansion of power distribution systems’, IEEE Trans. Power Syst., 1991, 6, (1), pp. 245253 (doi: 10.1109/59.131069).
    27. 27)
      • 19. Rajan, C.: ‘Hydro-thermal unit commitment problem using simulated annealing embedded evolutionary programming approach’, Int. J. Electr. Power Energy Syst., 2011, 33, (4), pp. 939946 (doi: 10.1016/j.ijepes.2011.01.002).
    28. 28)
      • 25. Abu-Mouti, F.S., El-Hawary, M.E.: ‘Optimal distributed generation allocation and sizing in distribution systems via artificial bee colony algorithm’, IEEE Trans. Power Deliv., 2011, 26, (4), pp. 20902101 (doi: 10.1109/TPWRD.2011.2158246).
    29. 29)
      • 1. Borges, C.L.T., Martins, V.F.: ‘Multistage expansion planning for active distribution networks under demand and Distributed Generation uncertainties’, Int. J. Electr. Power Energy Syst., 2012, 38, (1), pp. 107116 (doi: 10.1016/j.ijepes.2011.10.031).
    30. 30)
      • 16. Ouyang, Z., Shahidehpour, M.: ‘A hybrid artificial neural network-dynamic programming approach to unit commitment’, IEEE Trans. Power Syst., 1992, 7, (1), pp. 236242 (doi: 10.1109/59.141709).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2012.0289
Loading

Related content

content/journals/10.1049/iet-gtd.2012.0289
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading