access icon free Direct Lyapunov theory-based method for power oscillation damping by robust finite-time control of unified power flow controller

Unified power flow controller (UPFC) is one of the most versatile and complex flexible AC transmission system (FACTS) devices. It is emerged with a proven capability of instantaneous control of transmission line parameters. This study presents an approach based on the direct Lyapunov stability theory with finite-time convergence and chattering-free characteristics to improve damping of power oscillations using UPFC. A state-variable control strategy is derived and implemented to tackle the problem of finite-time convergence of system states. In the suggested method, the chattering phenomena and discontinuity of the controller, that is common in finite-time controllers, are removed to obtain a continuous and smooth controller. The suggested controller is simple and clear than the conventional famous finite-time controllers for double-integrator systems. Simulation results are given to illustrate the effectiveness and robustness against parameter uncertainty and external disturbances of the proposed algorithm. It is shown that the settling time of the system, enhanced with the proposed controller is significantly less than the conventional non-linear controllers. The proposed controller is investigated on UPFC connected to a two-bus power system.

Inspec keywords: Lyapunov methods; power transmission control; flexible AC transmission systems; power control; power transmission faults; load flow control; robust control

Other keywords: FACTS; external disturbance; UPFC; nonlinear controller; transmission line parameter control; finite-time convergence; chattering-free characteristics; state-variable control strategy; parameter uncertainty; unified power flow controller; two-bus power system; flexible AC transmission system; direct Lyapunov theory-based method; power oscillation damping; robust finite-time control; double-integrator system

Subjects: Power and energy control; Stability in control theory; Power system control; a.c. transmission; Control of electric power systems

References

    1. 1)
      • 22. Machowski, J., Robak, S., Bialek, J.W., Bumby, J.R., Abi-Samra, N.: ‘Decentralized stability enhancing control of synchronous generator’, IEEE Trans. Power Syst., 2000, 15, (4), pp. 13361344 (doi: 10.1109/59.898110).
    2. 2)
      • 8. Higorani, N.G., Gyugyi, L.: ‘Understanding FACTS: concepts and technology of flexible ac transmission systems’ (IEEE Press, New Jersey, 1999).
    3. 3)
      • 7. Song, Y.H., Johns, A.T.: ‘Flexible AC transmission systems (FACTS)’. IEE Power and Energy Series 30, London, UK, 1999.
    4. 4)
      • 21. Machowski, J., Robak, S., Bialek, J., Bumby, J.R.: ‘Novel excitation control system for synchronous generator’, IEE Proc. Gener. Transm. Distrib., 1998, 145, pp. 537546 (doi: 10.1049/ip-gtd:19982182).
    5. 5)
      • 1. Pandey, R.K., Singh, N.K.: ‘UPFC control parameter identification for effective power oscillation damping’, Electr. Power Energy Syst., 2009, 31, pp. 269276 (doi: 10.1016/j.ijepes.2009.03.002).
    6. 6)
      • 17. Dash, P.K., Mishra, S., Panda, G.: ‘Damping multimodal power system oscillation using hybrid fuzzy controller for series connected FACTS devices’, IEEE Trans. Power Syst., 2000, 15, (4), pp.1360–1366.
    7. 7)
      • 27. Bhat, S., Bernstein, D.: ‘Finite-time stability of continuous autonomous systems’, SIAM J. Control Optim., 2000, 38, pp. 751766 (doi: 10.1137/S0363012997321358).
    8. 8)
      • 9. Padiyar, K.R., Uma Rao, K.: ‘Modeling and control of unified power flow controller for transient stability’, Electr. Power Energy Syst., 1999, 21, pp. 111 (doi: 10.1016/S0142-0615(98)00028-3).
    9. 9)
      • 2. Mithulananthan, N., Canizares, C.A., Reeve, J., Rogers, G.J.: ‘Comparison of PSS, SVC and STATCOM controllers for damping power system oscillations’, IEEE Trans. Power Syst., 2002.
    10. 10)
      • 19. Machowski, J., Bialek, J., Bumby, J.R.: ‘Power system dynamics and stability’ (John Wiley, Chichester, UK, 1997).
    11. 11)
      • 30. Bhat, S., Bernstein, D.: ‘Continuous finite-time stabilization of the translational and rotational double integrators’, IEEE Trans. Autom. Control, 1998, 43, pp. 678682 (doi: 10.1109/9.668834).
    12. 12)
      • 14. Uzunovic, E., Canizares, C.A., Reeve, J.: ‘EMTP studies of UPFC power oscillation damping’. Proc. NAPS'99, San Luis Obispo, California, October 1999, pp. 155163.
    13. 13)
      • 11. Dong, L.Y., Zhang, L., Crow, M.L.: ‘A new control strategy for the unified power flow controller’. Proc. IEE Power Eng. Soc. Winter Meeting, 2002, vol. 1, pp. 562566.
    14. 14)
      • 16. Kazemi, A., Sohrforouzani, M.V.: ‘Power system damping using fuzzy controlled facts devices’, Electr. Power Energy Syst., 2006, 28, pp. 349357 (doi: 10.1016/j.ijepes.2005.09.008).
    15. 15)
      • 25. Colbia-Vega, A., de Leon-Morales, J., Fridman, L., Salas-Pena, O., Mata-Jimenez, M.T.: ‘Robust excitation control design using sliding-mode technique for multi-machine power systems’, Electr. Power Syst. Res., 2008, 78, pp. 16271634 (doi: 10.1016/j.epsr.2008.02.011).
    16. 16)
      • 3. Larsen, E.V., Sanchez-Gasca, J.J., Chow, J.H.: ‘Concept for design of FACTS controllers to damp power swings’, IEEE Trans. PWRS, 1995, 10, (2), pp. 94855.
    17. 17)
      • 20. Leon, A.E., Solsona, J.A., Valla, M.I.: ‘Comparison among nonlinear excitation control strategies used for damping power system oscillations’, Energy Convers. Manag., 2012, 53, pp. 5567 (doi: 10.1016/j.enconman.2011.08.010).
    18. 18)
      • 6. Smith, K.S., Ran, L., Penman, J.: ‘Dynamic modelling of a unified flow controller’, IEE Proc. Gener. Transm. Distrib., 1997, 144, (1), pp. 712 (doi: 10.1049/ip-gtd:19970680).
    19. 19)
      • 4. Januszewski, M., Machowski, J., Bialek, J.W.: ‘Application of the direct Lyapunov method to improve damping of power swings by control of UPFC’, IEE Proc. Gener. Transm. Distrib., 2004, 151, (2), pp. 252260 (doi: 10.1049/ip-gtd:20040054).
    20. 20)
      • 29. Polyakov, A., Poznyak, A.: ‘Lyapunov function design for finite-time convergence analysis: twisting controller for second-order sliding mode realization’, Automatica, 2009, 45, pp. 444448 (doi: 10.1016/j.automatica.2008.07.013).
    21. 21)
      • 26. Aghababa, M.P., Khanmohammadi, S., Alizadeh, G.: ‘Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique’, Appl. Math. Model., 2011, 35, pp. 30803091 (doi: 10.1016/j.apm.2010.12.020).
    22. 22)
      • 15. Shayeghi, H., Shayanfar, H.A., Jalilzadeh, S., Safari, A.: ‘Tuning of damping controller for UPFC using quantum particle swarm optimizer’, Energy Convers. Manag., 2010, 51, pp. 22992306 (doi: 10.1016/j.enconman.2010.04.002).
    23. 23)
      • 31. Guo, J., Crow, M.L., Sarangapani, J.: ‘An improved UPFC control for oscillation damping’, IEEE Trans. Power Syst., 2009, 24, (1), pp. 288296 (doi: 10.1109/TPWRS.2008.2008676).
    24. 24)
      • 18. Dash, P.K., Mishra, S., Panda, G.: ‘A radial basis function neural network controller for UPFC’, IEEE Trans. Power Syst., 2000, 15, (4), pp. 1293–1299.
    25. 25)
      • 12. Manrai, R., Khanna, R., Singh, B., Manrai, P.: ‘Power system stability using fuzzy logic based Unified Power Flow Controller in SMIB power system’. Int. Conf. Power, Signals, Controls and Computation (EPSCICON), 2012, pp.1–4.
    26. 26)
      • 23. Lo, K.L., Ma, T.T.: ‘UPFC damping control strategy based on transient energy function’, Electr. Power Syst. Res., 2000, 56, pp. 195203 (doi: 10.1016/S0378-7796(00)00098-5).
    27. 27)
      • 28. Ajami, A., Shotorbani, A.M., Aagababa, M.P.: ‘Application of the direct Lyapunov method for robust finite-time power flow control with a unified power flow controller’, IET Gener. Transm. Distrib., 2012, 6, (9), pp. 822830 (doi: 10.1049/iet-gtd.2011.0865).
    28. 28)
      • 5. Wang, H.F., Swift, F.J.: ‘A unified model for the analysis of FACTS devices in damping power system oscillations. Part I. single-machine infinite-bus power systems’, IEEE Trans. Power Deliv., 1997, 12, (2), pp. 941946 (doi: 10.1109/61.584417).
    29. 29)
      • 24. Bidadfar, A., Abedi, M., Karari, M., Chu, C.C.: ‘Power swings damping improvement by control of UPFC and SMES based on direct Lyapunov method application’. 2008 IEEE Conversion and Delivery of Electrical Energy in the 21st Century, pp. 17.
    30. 30)
      • 13. Yang, N., Liu, Q., McCalley, J.D.: ‘TCSC controller design for damping inter area oscillations’, IEEE Trans. Power Syst., 1998, 13, (4), pp. 13041310 (doi: 10.1109/59.736269).
    31. 31)
      • 10. Chang, C.-T., Hsu, Y.-Y.: ‘Design of UPFC controllers and supplementary damping controller for power transmission control and stability enhancement of a longitudinal power system’, IEE Proc. Generat. Transm. Distrib., 2002, 149, (4), pp. 463471 (doi: 10.1049/ip-gtd:20020199).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2012.0274
Loading

Related content

content/journals/10.1049/iet-gtd.2012.0274
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading