Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Calculation of the ion flow field of AC–DC hybrid transmission lines

Calculation of the ion flow field of AC–DC hybrid transmission lines

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A simulation method to calculate the ion flow field of AC–DC hybrid lines is proposed. The charge simulation method (CSM) and the finite element method (FEM) are applied to calculate the electric field, while a time-dependent upwind differential algorithm is applied to calculate the migration of space charges. Furthermore, a variable time-step discretisation method is introduced to accelerate the computational process. The calculation results of ground level electric field and ion current density of a reduced-scale AC–DC hybrid line model are compared with previous experimental and calculating works. Satisfactory agreement is obtained between our calculation results and the experimental ones. As an application, the ion flow field of a hybrid 1000 kV AC/800 kV DC transmission line is simulated and analysed.

References

    1. 1)
      • M.P. Sarma . (2000) Corona performance of high-voltage transmission lines.
    2. 2)
      • Kasten, D.G., Sebo, S.A., Zhao, T., Zaffanella, L.E., Clairmont, B.A.: `Corona tests on reduced-scale two-conductor hybrid lines', Electrical Insulation and Dielectric Phenomena, Ann. Report Conf., 1993, 17–20, p. 624–629.
    3. 3)
      • D.A. Rickard , H.S.B. Elayyan , A. Haddad , R.T. Waters . Corona space charge development for combined alternating and direct voltage excitation. IEE Proc. Sci. Meas. Technol. , 6 , 441 - 448
    4. 4)
      • B.A. Clairmont , G.B. Johnson , L.E. Zaffanella . The effect of HVAC-HVDC line separation in a hybrid corridor. IEEE Trans. Power Deliv. , 2 , 1338 - 1350
    5. 5)
      • W. Janischewskyj , G. Cela . Finite element solution for electrical fields of coronating DC transmission lines. IEEE Trans. Power Appar. Syst. , 3 , 1000 - 1012
    6. 6)
      • J.J. Clade , C.H. Gary , C.A. Lefevre . Calculation of corona losses beyond the critical gradient in alternating voltage. IEEE Trans. Power Appar. Syst. , 5 , 695 - 703
    7. 7)
      • M.P. Sarma , W. Janischewskyj . Analysis of corona losses on DC transmission lines: II bipolar lines. IEEE Trans. Power Appar. Syst. , 10 , 1476 - 1491
    8. 8)
      • M. Abdel-Salam , E.Z. Abdel-Aziz . Corona power loss determination on multi-phase power transmission lines. Electr. Power Syst. Res. , 2 , 123 - 132
    9. 9)
      • Abdel-Salam, M., El-Mohandes, M.T., El-Kishky, H.: `Electric field around parallel DC and multi-phase AC transmission lines', Industry Applications Society Ann. Meeting Conf. Record of the 1989 IEEE, 1989, 2, 1–5, p. 2014–2020.
    10. 10)
      • V.L. Chartier , S.H. Sarkinen , R.D. Stearns , A.L. Burns . Investigation of corona and field effects of AC/DC hybrid transmission lines. IEEE Trans. Power Appar. Syst. , 1 , 72 - 80
    11. 11)
      • M.P. Sarma , W. Janischewskyj . Analysis of corona losses on DC transmission lines: I unipolar lines. IEEE Trans. Power Appar. Syst. , 5 , 718 - 731
    12. 12)
      • Zhao, T., Illan, J., Cohol, J.M., Hinton, R.D., Sebo, S.A., Kasten, D.G.: `Design, construction and utilization of a new reduced-scale model for the study of hybrid (AC and DC) line corona', Transmission and Distribution Conf., Proc. 1994 IEEE Power Engineering Society, 1994, 10–15, p. 239–245.
    13. 13)
      • M. Abdel-Salam , D. Shamloul . Computation of ion-flow fields of AC coronating wires by charge simulation techniques. IEEE Trans. Electr. Insul. , 2 , 352 - 361
    14. 14)
      • T. Takuma , T. Kawamoto . A very stable calculation method for ion flow field of HVDC transmission lines. IEEE Trans. Power Deliv. , 1 , 189 - 198
    15. 15)
      • Sebo, S.A., Kasten, D.G., Zhao, T., Zaffanella, L.E., Clairmont, B.A., Zelingher, S.: `Development of reduced-scale line modeling for the study of hybrid corona', Electrical Insulation and Dielectric Phenomena, Ann. Report Conf., 1993, 17–20, p. 538–543.
    16. 16)
      • M. Abdel-Salam , E.Z. Abdel-Aziz . A charge-simulation-based method for calculating corona loss on AC power transmission lines. J. Phys. D: Appl. Phys. , 2570 - 2579
    17. 17)
      • T. Takuma , T. Ikeda , T. Kawamoto . Calculation of ion flow fields of HVDC transmission lines by the finite element method. IEEE Trans. Power Appar. Syst. , 12 , 4802 - 4810
    18. 18)
      • P.S. Maruvada , S. Drogi . Field and ion interactions of hybrid AC/DC transmission lines. IEEE Trans. Power Deliv. , 3 , 1165 - 1172
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2009.0020
Loading

Related content

content/journals/10.1049/iet-gtd.2009.0020
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address