Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Optimal design of stator and rotor slot of induction motor for electric vehicle applications

The performance requirement of a squirrel cage induction motor (IM) for application in electric vehicle (EV), with high efficiency, power factor and breakdown torque, is a challenging task for a machine designer. A new 5 hp wide speed operating range IM suitable for EV application has been designed here. The parametric study to analyse the effect of stator and rotor slot dimensions on different performance parameters has been carried out. This parametric study forms the basis of the multi-objective optimisation problem taken in this study. An evolutionary algorithm has been used for the IM design optimisation and its performance is compared to that of a conventional one. The optimised IM is then fabricated and tested in the laboratory to validate the simulation results.

References

    1. 1)
      • 17. Duan, Y., Harley, R.G.: ‘A novel method for multiobjective design and optimization of three phase induction machines’, IEEE Trans. Ind. Appl., 2011, 47, (4), pp. 17071715.
    2. 2)
      • 21. Mallik, S., Mallik, K., Barman, A., et al: ‘Efficiency and cost optimized design of an induction motor using genetic algorithm’, IEEE Trans. Ind. Electron., 2017, 64, (12), pp. 98549863.
    3. 3)
      • 30. Pyrhonen, J., Jokinen, T., Hrabovcova, V.: ‘Design of rotating electrical machines’ (John Wiley & Sons, West Sussex, UK, 2013).
    4. 4)
      • 2. de Santiago, J., Bernhoff, H., Ekergård, , et al: ‘Electrical motor drivelines in commercial all-electric vehicles: a review’, IEEE Trans. Veh. Technol., 2012, 61, (2), pp. 475484.
    5. 5)
      • 28. Magill, M.P., Krein, P.T.: ‘Examination of design strategies for inverter-driven induction machines’. Power and Energy Conf., Champaign, USA, February 2012, pp. 16.
    6. 6)
      • 32. Boldea, I., Tutelea, L.N., Parsa, L., et al: ‘Automotive electric propulsion systems with reduced or no permanent magnets: an overview’, IEEE Trans. Ind. Electron., 2014, 61, (10), pp. 56965711.
    7. 7)
      • 16. Guan, Y., Zhu, Z.Q., Afinowi, I., et al: ‘Influence of machine design parameters on flux-weakening performance of induction machine for electrical vehicle application’, IET Electr. Syst. Transp., 2014, 5, (1), pp. 4352.
    8. 8)
      • 20. Faiz, J., Sharifian, M.B.: ‘Optimal design of three phase induction motors and their comparison with a typical industrial motor’, Comput. Electr. Eng., 2001, 27, (2), pp. 133144.
    9. 9)
      • 6. Boglietti, A., Cavagnino, A., Lazzari, M.: ‘Computational algorithms for induction motor equivalent circuit parameter determination – part ii: skin effect and magnetizing characteristics’, IEEE Trans. Ind. Electron., 2011, 58, (9), pp. 37343740.
    10. 10)
      • 26. Liuzzi, G., Lucidi, S., Parasiliti, F., et al: ‘Multiobjective optimization techniques for the design of induction motors’, IEEE Trans. Magn., 2003, 39, (3), pp. 12611264.
    11. 11)
      • 25. Fei, R., Fuchs, E., Huang, H.: ‘Comparison of two optimization techniques as applied to three-phase induction motor design’, IEEE Trans. Energy Convers., 1989, 4, (4), pp. 651660.
    12. 12)
      • 31. Kalyanmoy, D.: ‘Multi objective optimization using evolutionary algorithms’ (John Wiley and Sons, West Sussex, UK, 2001).
    13. 13)
      • 8. Agamloh, E.B., Boglietti, A., Cavagnino, A.: ‘The incremental design efficiency improvement of commercially manufactured induction motors’, IEEE Trans. Ind. Appl., 2013, 49, (6), pp. 24962504.
    14. 14)
      • 4. Boglietti, A., Cavagnino, A., Lazzari, M., et al: ‘Induction motor design methodology based on rotor diameter progressive growth’. Proc. IEEE Energy Conversion Congress and Exposition, Phoenix, USA, September 2011, pp. 31043111.
    15. 15)
      • 11. Zhang, D., Park, C.S., Koh, C.S.: ‘A new optimal design method of rotor slot of three-phase squirrel cage induction motor for nema class d speed-torque characteristic using multi-objective optimization algorithm’, IEEE Trans. Magn., 2012, 48, (2), pp. 879882.
    16. 16)
      • 3. Zeraoulia, M., Benbouzid, M.E.H., Diallo, D.: ‘Electric motor drive selection issues for hev propulsion systems: a comparative study’, IEEE Trans. Veh. Technol., 2006, 55, (6), pp. 17561764.
    17. 17)
      • 29. Bose, B.K.: ‘Modern power electronics and ac drives’ (PHI Learning Pvt. Ltd., New Jersey, USA, 2012).
    18. 18)
      • 19. Tutelea, L., Boldea, I.: ‘Induction motor electromagnetic design optimization: Hooke Jeeves method versus genetic algorithms’. Optimization of Electrical and Electronic Equipment, Basov, Romania, May 2010, pp. 485492.
    19. 19)
      • 12. Zhao, Z., Meng, S., Chan, C., et al: ‘A novel induction machine design suitable for inverter-driven variable speed systems’, IEEE Trans. Energy Convers., 2000, 15, (4), pp. 41420.
    20. 20)
      • 15. Wang, T., Zheng, P., Zhang, Q., et al: ‘Design characteristics of the induction motor used for hybrid electric vehicle’, IEEE Trans. Magn., 2005, 41, (1), pp. 505508.
    21. 21)
      • 13. Oldenkamp, J.L., Peak, S.C.: ‘Selection and design of an inverter–driven induction motor for a traction drive system’, IEEE Trans. Ind. Appl., 1985, IA-21, (1), pp. 259265.
    22. 22)
      • 10. Kim, J.W., Kim, B.T., Kwon, B.I.: ‘Optimal stator slot design of inverter-fed induction motor in consideration of harmonic losses’, IEEE Trans. Magn., 2005, 41, (5), pp. 20122015.
    23. 23)
      • 27. Lee, D., Jung, H.C.: ‘Cost pattern value method for local search algorithms applied to optimal fea-based design of induction motors’, IEEE Trans. Magn., 2018, 54, (4), pp. 18.
    24. 24)
      • 1. Chan, C.C., Bouscayrol, A., Chen, K.: ‘Electric, hybrid, and fuel–cell vehicles: architectures and modeling’, IEEE Trans. Veh. Technol., 2010, 59, (2), pp. 589598.
    25. 25)
      • 9. Alberti, L., Bianchi, N., Boglietti, A., et al: ‘Core axial lengthening as effective solution to improve the induction motor efficiency classes’, IEEE Trans. Ind. Appl., 2014, 50, (1), pp. 218225.
    26. 26)
      • 24. Bianchi, N., Bolognani, S.: ‘Design optimisation of electric motors by genetic algorithms’, IEE Proc., Electr. Power Appl., 1998, 145, (5), pp. 475483.
    27. 27)
      • 33. Burress, T.A., Campbell, S.L., Coomer, , et al: ‘Evaluation of the 2010 Toyota Prius hybrid synergy drive system’ (Power Electronics and Electric Machinery Research Facility, Tennessee, USA, 2011).
    28. 28)
      • 18. Cho, D.H., Jung, H.K., Lee, C.G.: ‘Induction motor design for electric vehicle using a niching genetic algorithm’, IEEE Trans. Ind. Appl., 2001, 37, (4), pp. 994999.
    29. 29)
      • 7. Boglietti, A., Cavagnino, A., Ferraris, L., et al: ‘No tooling cost process for induction motors energy efficiency improvements’, IEEE Trans. Ind. Appl., 2005, 41, (3), pp. 808816.
    30. 30)
      • 14. Jurkovic, S., Rahman, K.M., Morgante, J.C., et al: ‘Induction machine design and analysis for general motors e-assist electrification technology’, IEEE Trans. Ind. Appl., 2015, 51, (1), pp. 631639.
    31. 31)
      • 22. Çunkaş, M., Akkaya, R.: ‘Design optimization of induction motor by genetic algorithm and comparison with existing motor’, Math. Comput. Appl., 2006, 11, (3), pp. 193203.
    32. 32)
      • 5. Boglietti, A., Cavagnino, A., Lazzari, M.: ‘Computational algorithms for induction-motor equivalent circuit parameter determination – part i: resistances and leakage reactances’, IEEE Trans. Ind. Electron., 2011, 58, (9), pp. 37233733.
    33. 33)
      • 23. Williamson, S., McClay, C.I.: ‘Optimization of the geometry of closed rotor slots for cage induction motors’, IEEE Trans. Ind. Appl., 1996, 32, (3), pp. 560568.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2018.5050
Loading

Related content

content/journals/10.1049/iet-est.2018.5050
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address