http://iet.metastore.ingenta.com
1887

Voltage-dependent modelling of fast charging electric vehicle load considering battery characteristics

Voltage-dependent modelling of fast charging electric vehicle load considering battery characteristics

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Electrical Systems in Transportation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Electric vehicle (EV) integration into the power grids is increasing rapidly. To analyse the effect of charging of EVs on the distribution system, most of the literature considered EV load as constant power load (CPL) which do not represent the exact behaviour of these uncertain loads. An accurate EV load modelling is developed by determining the relationship between power consumption by EV, grid voltage and state of charges of fast charging EV load. The derived relationship is validated by simulating a realistic fast charging system to obtain a battery charging behaviour characteristics and is curve fitted on standard exponential load model. Further the impact of stochastic 24-h load profile of fast charging EVs considering the exponential load model is investigated on IEEE 123 bus distribution system and is compared with the constant impedance-constant current-constant power (ZIP) load model and CPL model. The stochastic 24-h load is developed using queuing analysis-based method. The results show that the exponential load model is the better representation of fast charging EV load and 10.19% of the reduction in annual energy demand and 11.19% of the reduction in annual energy loss is observed for exponential load model compared to the existing CPL model.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2017.0096
Loading

Related content

content/journals/10.1049/iet-est.2017.0096
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address