Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Comparison of Li-ion battery equivalent circuit modelling using impedance analyzer and Bayesian networks

An energy storage system simulation requires a battery model capable of precisely predicting the dynamic behaviour and IV characteristics. An equivalent circuit model (ECM) of a battery generates an electric circuit able to replicate complicated battery characteristics. Combination of time domain and frequency domain tests can be utilised to parameterise ECM components properly. The goal of this study is to discuss two systematic approaches to decide the ECM parameters, which can be replicated on any battery technology. Time and frequency domain testing are carried out on a commercial electric bicycle Li-ion battery composed of Samsung ICR18650-22P. Then, impedance analyzer approach and Bayesian network method are applied to estimate the ECM circuit elements with different circuit topologies. The models were developed in MATLAB/Simulink environment. A highly dynamic drive cycle based on the E-bike was utilised to validate the ECMs through hardware-in-loop testing.

References

    1. 1)
      • 9. Li, J., Mazzola, M., Gafford, J., et al: ‘A new parameter estimation algorithm for an electrical analogue battery model’. Twenty-Seventh Annual IEEE Applied Power Electronics Conf. and Exposition, Orlando, FL, USA, February 2012.
    2. 2)
      • 5. Farag, M., Fleckenstein, M., Habibi, S.R.: ‘Li-ion battery SOC estimation using non-linear estimation strategies based on equivalent circuit models’. SAE World Congress and Exhibition, Detroit, MI, USA, April 2014.
    3. 3)
      • 27. Hastings, W.K.: ‘Monte Carlo sampling methods using Markov chains and their applications’, Biometrika, 1970, 57, (1), pp. 97109.
    4. 4)
      • 1. Malysz, P.P., Yang, H.H.: ‘Fundamentals of electric energy storage systems’, in Emadi, A. (Ed.): ‘Advanced electric drive vehicles’ (CRC Press, Florida, 2014, 1st edn.), pp. 237282.
    5. 5)
      • 7. Andre, D., Meiler, M., Steiner, K., et al: ‘Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. II: modelling’, J. Power Sources, 2011, 196, (12), pp. 53495356.
    6. 6)
      • 6. Do, D.V., Forgez, C., Benkara, K.E.K., et al: ‘Impedance observer for a Li-ion battery using Kalman filter’, IEEE Trans. Veh. Technol., 2009, 58, (8), pp. 39303937.
    7. 7)
      • 2. Jafari, M., Gauchia, A., Zhao, S., et al: ‘Electric vehicle battery cycle aging evaluation in real-world daily driving and vehicle-to-grid services’, Early accessIEEE Trans. Transp. Electrific., 2018, 4, (1), pp. 122134.
    8. 8)
      • 22. He, Z., Gao, M., Ma, G., et al: ‘Online state-of-health estimation of lithium-ion batteries using dynamic Bayesian networks’, J. Power Sources, 2014, 267, pp. 576583.
    9. 9)
      • 17. Tian, Y., Xia, B., Sun, W., et al: ‘A modified model based state of charge estimation of power lithium-ion batteries using unscented Kalman filter’, J. Power Sources, 2014, 270, pp. 619626.
    10. 10)
      • 25. Wang, W., Malysz, P., Khan, K., et al: ‘Modeling, parameterization, and benchmarking of a lithium ion electric bicycle battery’. IEEE Energy Conversion Congress and Exposition, Milwaukee, WI, USA, September 2016.
    11. 11)
      • 3. Jungst, R.G., Nagasubramanian, G., Case, H.L., et al: ‘Accelerated calendar and pulse life analysis of lithium-ion cells’, J. Power Sources, 2003, 119–121, pp. 870873.
    12. 12)
      • 10. Hentunen, A., Lehmuspelto, T., Suomela, J.: ‘Time-domain parameter extraction method for Thévenin-equivalent circuit battery models’, IEEE Trans. Energy Convers., 2014, 29, (3), pp. 558566.
    13. 13)
      • 26. Buller, S.: ‘Impedance-based simulation models for energy storage devices in advanced automotive applications’. PhD thesis, RWTH Aachen, Aachen, Germany, 2003.
    14. 14)
      • 18. Saw, L.H., Ye, Y., Tay, A.A.O.: ‘Electro-thermal characterization of lithium iron phosphate cell with equivalent circuit modeling’, Energy Convers. Manage., 2014, 87, pp. 367377.
    15. 15)
      • 24. Ng, S.S.Y., Xing, Y., Tsui, K.L.: ‘A naive Bayes model for robust remaining useful life prediction of lithium-ion battery’, Appl. Energy, 2014, 118, pp. 114123.
    16. 16)
      • 15. Baba, A., Itabashi, K., Teranishi, N., et al: ‘Simultaneous estimation of the SOC and parameters of batteries for HEV/EV’. SAE 2016 World Congress and Exhibition, April 2016.
    17. 17)
      • 20. Tanaka, T., Ito, S., Muramatsu, M., et al: ‘Accurate and versatile simulation of transient voltage profile of lithium-ion secondary battery employing internal equivalent electric circuit’, Appl. Energy, 2015, 143, pp. 200210.
    18. 18)
      • 21. Saha, B., Goebel, K., Poll, S., et al: ‘Prognostics methods for battery health monitoring using a Bayesian framework’, IEEE Trans. Instrum. Meas., 2009, 58, (2), pp. 291296.
    19. 19)
      • 11. Hsieh, Y.C., Lin, T.D., Chen, R.J., et al: ‘Electric circuit modelling for lithium-ion batteries by intermittent discharging’, IET Power Electron., 2014, 7, (10), pp. 26722677.
    20. 20)
      • 13. Li, K., Tseng, K.J.: ‘An equivalent circuit model for Li-ion batteries used in energy storage systems in building environment’. 2016 IEEE Innovative Smart Grid Technologies, Asia, December 2016.
    21. 21)
      • 16. Baba, A., Adachi, S.: ‘SOC estimation of HEV/EV battery using series Kalman filter’, Electr. Eng. Jpn., 2014, 187, pp. 5362.
    22. 22)
      • 4. Chen, C.H., Liu, J., Amine, K.: ‘Symmetric cell approach and impedance spectroscopy of high power lithium-ion batteries’, J. Power Sources, 2001, 96, (2), pp. 321328.
    23. 23)
      • 8. Jafari, M., Gauchia, A., Zhang, K., et al: ‘Simulation and analysis of the effect of real-world driving styles in an EV battery performance and aging’, IEEE Trans. Transp. Electrific., 2015, 1, (4), pp. 391401.
    24. 24)
      • 14. Gandolfo, D., Brandão, A., Patiño, D., et al: ‘Dynamic model of lithium polymer battery – load resistor method for electric parameters identification’, J. Energy Inst., 2015, 88, (4), pp. 470479.
    25. 25)
      • 12. Cao, Y., Kroeze, R.C., Krein, P.T.: ‘Multi-timescale parametric electrical battery model for use in dynamic electric vehicle simulations’, IEEE Trans. Transp. Electrific., 2016, 2, (4), pp. 432442.
    26. 26)
      • 23. Jin, G., Matthews, D.E., Zhou, Z.: ‘A Bayesian framework for on-line degradation assessment and residual life prediction of secondary batteries inspacecraft’, Reliab. Eng. Syst. Safety, 2013, 113, pp. 720.
    27. 27)
      • 19. Huria, T., Ludovici, G., Lutzemberger, G.: ‘State of charge estimation of high power lithium iron phosphate cells’, J. Power Sources, 2014, 249, pp. 92102.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2017.0087
Loading

Related content

content/journals/10.1049/iet-est.2017.0087
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address