Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Efficiency and performance analysis of DTC-based IM drivetrain using variable dc-link voltage for electric vehicle applications

In recent times, there has been a surge in R&D activities in the area of electric vehicles (EVs). This surge is fuelled by various governmental policies that aim at increasing the penetration of EVs on roads. This work aims at developing and analyzing drivetrain configurations for city commute vehicles. Since city commute involves frequent start stops, it is necessary to focus on the dynamic performance as well as the system efficiency. Here two drivetrain configurations are considered. The first has a battery pack, an inverter, and an induction motor while the second configuration has an additional dc–dc converter. A detailed control strategy for each drivetrain is presented. Moreover, an experimental setup is developed that mimics the behavior of a scaled-down vehicle. Both the configurations are subjected to extensive experimentation using the developed setup and it is found that despite the use of an additional dc–dc converter, the second configuration has better overall system efficiency in city driving conditions. To explain the results, detailed efficiency maps of the individual subsystem and the overall system are also presented. Furthermore, the drive cycle response and energy consumption analysis, for both the drivetrains for NYCC and city part-NEDC are presented.

References

    1. 1)
      • 7. Boldea, I., Tutelea, L.N., Parsa, L., et al: ‘Automotive electric propulsion systems with reduced or No permanent magnets: an overview’, IEEE Trans. Ind. Electron., 2014, 61, (10), pp. 56965711.
    2. 2)
      • 37. Ambrozic, V., Bertoluzzo, M., Buja, G.S., et al: ‘An assessment of the inverter switching characteristics in DTC induction motor drives’, IEEE Trans. Power Electron., 2005, 20, (2), pp. 457465.
    3. 3)
      • 16. Tole Sutikno, T., Rumzi, N., Idris, N., et al: ‘A review of direct torque control of induction motors for sustainable reliability and energy efficient drives’, Renew. Sustain. Energy Rev., 2014, 32, pp. 548558.
    4. 4)
      • 18. Qian, W., Cha, H., Peng, F.Z., et al: ‘55-kW variable 3X DC-DC converter for plug-in hybrid electric vehicles’, IEEE Trans. Power Electron., 2012, 27, (4), pp. 16681678.
    5. 5)
      • 28. Kim, J.-H., Choi, J.-W., Sul, S.-K.: ‘Novel rotor-flux observer using observer characteristic function in complex vector space for field-oriented induction motor drives’, IEEE Trans. Ind. Appl., 2002, 38, (5), pp. 13341343.
    6. 6)
      • 10. de Santiago, J., Bernhoff, H., Ekergård, B., et al: ‘Electrical motor drivelines in commercial all-electric vehicles: A review’, IEEE Trans. Veh. Technol., 2012, 61, (2), pp. 475484.
    7. 7)
      • 17. Aharon, I., Kuperman, A.: ‘Topological overview of powertrains for battery-powered vehicles with range extenders’, IEEE Trans. Power Electron., 2011, 26, (3), pp. 868876.
    8. 8)
      • 6. Chau, K.T.: ‘Electric vehicle machines and drives: design, analysis and application’ (Wiley, IEEE, Singapore, 2015).
    9. 9)
      • 15. Neacsu, D.O., Rajashekara, K.: ‘Comparative analysis of torque-controlled IM drives with applications in electric and hybrid vehicles’, IEEE Trans. Power Electron., 2011, 16, (2), pp. 240247.
    10. 10)
      • 32. ROHM Semiconductor: ‘SCT2280KE, N-channel SIC power MOSFET’, Technical Datasheet, 2003.
    11. 11)
      • 13. Casadei, D., Profumo, F., Serra, G., et al: ‘FOC and DTC: two viable schemes for induction motors torque control’, IEEE Trans. Power Electron., 2002, 17, (5), pp. 779787.
    12. 12)
      • 14. Rehman, H.u., Xu, L.: ‘Alternative energy vehicles drive system: control, flux and torque estimation, and efficiency optimization’, IEEE Trans. Veh. Technol., 2011, 60, (8), pp. 36253634.
    13. 13)
      • 42. Haddoun, A., Benbouzid, M.E.H., Diallo, D., et al: ‘A loss-minimization DTC scheme for EV induction motors’, IEEE Trans. Veh. Technol., 2007, 54, (1), pp. 8188.
    14. 14)
      • 24. Estima, J.O., Marques Cardoso, A.J.: ‘Efficiency analysis of drive train topologies applied to electric/hybrid vehicles’, IEEE Trans. Veh. Technol., 2012, 61, (3), pp. 10211031.
    15. 15)
      • 1. Juyal, S., Singh, M., Singh, S., et al: ‘India leaps ahead: transformative mobility solutions for all’, NITI Aayog INDIA and RMI, 2017.
    16. 16)
      • 41. Farasat, M., Trzynadlowski, A.M., Fadali, M.S.: ‘Efficiency improved sensorless control scheme for electric vehicle induction motors’, IET Electr. Syst. Transp., 2014, 4, (4), pp. 122131.
    17. 17)
      • 31. Wang, Y., Ito, T., Lorenz, R.D.: ‘Loss manipulation capabilities of deadbeat direct torque and flux control induction machine drives’, IEEE Trans. Industry. Appl., 2015, 51, (6), pp. 45544566.
    18. 18)
      • 30. Kaboli, S., Zolghadri, M.R., Vahdati-Khajeh, E.: ‘A fast flux search controller for DTC-based induction motor drives’, IEEE Trans. Ind. Electron., 2007, 54, (5), pp. 24072416.
    19. 19)
      • 38. Buja, G.S., Kazmierkowski, M.P.: ‘Direct torque control of PWM inverter-fed AC motors – a survey’, IEEE Trans. Ind. Electron., 2004, 51, (4), pp. 744757.
    20. 20)
      • 4. Hall, D., Moultak, M., Lutsey, N.: ‘Electric vehicle capitals of the world: demonstrating the path to electric drive’, Int. Council Clean Transp., 2017, pp. 157.
    21. 21)
      • 8. El-Refaie, A., Raminosoa, T., Reddy, P., et al: ‘Comparison of traction motors that reduce or eliminate rare-earth materials’, IET Electr. Syst. Transp., 2017, 7, (3), pp. 207214.
    22. 22)
      • 27. Prabhakar, K.K., Ramesh, M., Dalal, A., et al: ‘Efficiency investigation for electric vehicle powertrain with variable DC-link bus voltage’. IECON 2016 – 42nd Annual Conf. of the IEEE Industrial Electronics Society, Florence, Italy, 2016, pp. 17961801.
    23. 23)
      • 11. Grunditz, E.A., Thiringer, T.: ‘Performance analysis of current BEVs based on a comprehensive review of specifications’, IEEE Trans. Transp. Electrific., 2016, 2, (3), pp. 270289.
    24. 24)
      • 34. Fairchild Semiconductor: ‘FGH40N60SFD 600 V, 40 A field stop IGBT’, Technical Datasheet, 2008.
    25. 25)
      • 19. Hegazy, O., Mierlo, J.V., Lataire, P.: ‘Analysis, modeling, and implementation of a multidevice interleaved DC/DC converter for fuel cell hybrid electric vehicles’, EEE Trans. Power Electron., 2012, 27, (11), pp. 44454458.
    26. 26)
      • 21. Tenner, S., Gimther, S., Hofmann, W.: ‘Loss minimization of electric drive systems using a DC/DC converter and an optimized battery voltage in automotive applications’. IEEE Vehicle Power and Propulsion Conf. (VPPC), Chicago, IL, 2011, pp. 17.
    27. 27)
      • 23. Song, Y., Wang, B.: ‘Evaluation methodology and control strategies for improving reliability of HEV power electronic system’, IEEE Trans. Veh. Technol., 2014, 63, (8), pp. 36613676.
    28. 28)
      • 39. Graovac, D., Purschel, M.: ‘IGBT power losses calculation using the data-sheet parameters’, Infineon Appl. Note, 2009, 1.1, pp. 116.
    29. 29)
      • 2. Governor's Interagency Working Group on Zero-Emission Vehicles: ‘ZEV zero-emission vehicles on California roadways by 2025’, 2016.
    30. 30)
      • 25. Deng, W., Zhao, Y., Wu, J.: ‘Energy efficiency improvement via Bus voltage control of inverter for electric vehicles’, IEEE Trans. Veh. Technol., 2017, 66, (2), pp. 10631073.
    31. 31)
      • 12. Bose, B.K.: ‘Power electronics and motor drives: advances and trends’ (Elsevier Inc., Amsterdam, 2009).
    32. 32)
      • 33. Agilent Technologies: ‘HPCL-3120, 2.0 A output current IGBT gate drive optocoupler’, Technical Datasheet., 1999.
    33. 33)
      • 35. International Rectifier: ‘IR2130 3-phase bridge driver’, Technical Datasheet, 2004.
    34. 34)
      • 26. Sridharan, S., Krein, P.T.: ‘Optimizing variable DC link voltage for an induction motor drive under dynamic conditions’. Proc. IEEE ITEC'15, Dearborn, MI, 2015, pp. 16.
    35. 35)
      • 36. Rashid, M.H.: ‘Power electronics: circuits, devices & applications’ (Prentice-Hall, New Jersey, 2014).
    36. 36)
      • 22. Yu, C.-Y., Tamura, J., Lorenz, R.D.: ‘Optimum DC bus voltage analysis and calculation method for inverters/motors with variable DC bus voltage’, IEEE Trans. Ind. Appl., 2013, 49, (6), pp. 26192627.
    37. 37)
      • 40. Ehsani, M., Gao, Y., Emadi, A.: ‘Modern electric, hybrid electric, and fuel cell vehicles: fundamentals, theory, and design’ (CRC Press, Taylor & Francis Group, 2010).
    38. 38)
      • 9. Buyukdegirmenci, V.T., Bazzi, A.M., Krein, P.T.: ‘Evaluation of induction and permanent-magnet synchronous machines using drive-cycle energy and loss minimization in traction applications’, IEEE Trans. Ind. Appl., 2014, 50, (1), pp. 395403.
    39. 39)
      • 20. Schoenen, T., Kunter, M.S., Hennen, M.D., et al: ‘Advantages of a variable DC-link voltage by using a DC-DC converter in hybrid-electric vehicles’. IEEE Vehicle Power and Propulsion Conf. (VPPC), 2010, pp. 15.
    40. 40)
      • 5. Zeraoulia, M., Benbouzid, M.E.H., Diallo, D.: ‘Electric motor drive selection issues for HEV propulsion systems: A comparative study’, IEEE Trans. Veh. Technol., 2006, 55, (6), pp. 17561764.
    41. 41)
      • 29. Vasic, V., Vukosavic, S.N., Levi, E.: ‘A stator resistance estimation scheme for speed sensorless rotor flux oriented induction motor drives’, IEEE Trans. Energy Convers., 2003, 18, (4), pp. 476483.
    42. 42)
      • 3. Dror, M.B.: ‘Zero emission vehicle credits: China program design inputs brief’, Innov. Center Energy Transp., 2015, pp. 126.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2017.0086
Loading

Related content

content/journals/10.1049/iet-est.2017.0086
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address