http://iet.metastore.ingenta.com
1887

Efficiency and performance analysis of DTC-based IM drivetrain using variable dc-link voltage for electric vehicle applications

Efficiency and performance analysis of DTC-based IM drivetrain using variable dc-link voltage for electric vehicle applications

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Electrical Systems in Transportation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In recent times, there has been a surge in R&D activities in the area of electric vehicles (EVs). This surge is fuelled by various governmental policies that aim at increasing the penetration of EVs on roads. This work aims at developing and analyzing drivetrain configurations for city commute vehicles. Since city commute involves frequent start stops, it is necessary to focus on the dynamic performance as well as the system efficiency. Here two drivetrain configurations are considered. The first has a battery pack, an inverter, and an induction motor while the second configuration has an additional dc–dc converter. A detailed control strategy for each drivetrain is presented. Moreover, an experimental setup is developed that mimics the behavior of a scaled-down vehicle. Both the configurations are subjected to extensive experimentation using the developed setup and it is found that despite the use of an additional dc–dc converter, the second configuration has better overall system efficiency in city driving conditions. To explain the results, detailed efficiency maps of the individual subsystem and the overall system are also presented. Furthermore, the drive cycle response and energy consumption analysis, for both the drivetrains for NYCC and city part-NEDC are presented.

References

    1. 1)
      • 1. Juyal, S., Singh, M., Singh, S., et al: ‘India leaps ahead: transformative mobility solutions for all’, NITI Aayog INDIA and RMI, 2017.
    2. 2)
      • 2. Governor's Interagency Working Group on Zero-Emission Vehicles: ‘ZEV zero-emission vehicles on California roadways by 2025’, 2016.
    3. 3)
      • 3. Dror, M.B.: ‘Zero emission vehicle credits: China program design inputs brief’, Innov. Center Energy Transp., 2015, pp. 126.
    4. 4)
      • 4. Hall, D., Moultak, M., Lutsey, N.: ‘Electric vehicle capitals of the world: demonstrating the path to electric drive’, Int. Council Clean Transp., 2017, pp. 157.
    5. 5)
      • 5. Zeraoulia, M., Benbouzid, M.E.H., Diallo, D.: ‘Electric motor drive selection issues for HEV propulsion systems: A comparative study’, IEEE Trans. Veh. Technol., 2006, 55, (6), pp. 17561764.
    6. 6)
      • 6. Chau, K.T.: ‘Electric vehicle machines and drives: design, analysis and application’ (Wiley, IEEE, Singapore, 2015).
    7. 7)
      • 7. Boldea, I., Tutelea, L.N., Parsa, L., et al: ‘Automotive electric propulsion systems with reduced or No permanent magnets: an overview’, IEEE Trans. Ind. Electron., 2014, 61, (10), pp. 56965711.
    8. 8)
      • 8. El-Refaie, A., Raminosoa, T., Reddy, P., et al: ‘Comparison of traction motors that reduce or eliminate rare-earth materials’, IET Electr. Syst. Transp., 2017, 7, (3), pp. 207214.
    9. 9)
      • 9. Buyukdegirmenci, V.T., Bazzi, A.M., Krein, P.T.: ‘Evaluation of induction and permanent-magnet synchronous machines using drive-cycle energy and loss minimization in traction applications’, IEEE Trans. Ind. Appl., 2014, 50, (1), pp. 395403.
    10. 10)
      • 10. de Santiago, J., Bernhoff, H., Ekergård, B., et al: ‘Electrical motor drivelines in commercial all-electric vehicles: A review’, IEEE Trans. Veh. Technol., 2012, 61, (2), pp. 475484.
    11. 11)
      • 11. Grunditz, E.A., Thiringer, T.: ‘Performance analysis of current BEVs based on a comprehensive review of specifications’, IEEE Trans. Transp. Electrific., 2016, 2, (3), pp. 270289.
    12. 12)
      • 12. Bose, B.K.: ‘Power electronics and motor drives: advances and trends’ (Elsevier Inc., Amsterdam, 2009).
    13. 13)
      • 13. Casadei, D., Profumo, F., Serra, G., et al: ‘FOC and DTC: two viable schemes for induction motors torque control’, IEEE Trans. Power Electron., 2002, 17, (5), pp. 779787.
    14. 14)
      • 14. Rehman, H.u., Xu, L.: ‘Alternative energy vehicles drive system: control, flux and torque estimation, and efficiency optimization’, IEEE Trans. Veh. Technol., 2011, 60, (8), pp. 36253634.
    15. 15)
      • 15. Neacsu, D.O., Rajashekara, K.: ‘Comparative analysis of torque-controlled IM drives with applications in electric and hybrid vehicles’, IEEE Trans. Power Electron., 2011, 16, (2), pp. 240247.
    16. 16)
      • 16. Tole Sutikno, T., Rumzi, N., Idris, N., et al: ‘A review of direct torque control of induction motors for sustainable reliability and energy efficient drives’, Renew. Sustain. Energy Rev., 2014, 32, pp. 548558.
    17. 17)
      • 17. Aharon, I., Kuperman, A.: ‘Topological overview of powertrains for battery-powered vehicles with range extenders’, IEEE Trans. Power Electron., 2011, 26, (3), pp. 868876.
    18. 18)
      • 18. Qian, W., Cha, H., Peng, F.Z., et al: ‘55-kW variable 3X DC-DC converter for plug-in hybrid electric vehicles’, IEEE Trans. Power Electron., 2012, 27, (4), pp. 16681678.
    19. 19)
      • 19. Hegazy, O., Mierlo, J.V., Lataire, P.: ‘Analysis, modeling, and implementation of a multidevice interleaved DC/DC converter for fuel cell hybrid electric vehicles’, EEE Trans. Power Electron., 2012, 27, (11), pp. 44454458.
    20. 20)
      • 20. Schoenen, T., Kunter, M.S., Hennen, M.D., et al: ‘Advantages of a variable DC-link voltage by using a DC-DC converter in hybrid-electric vehicles’. IEEE Vehicle Power and Propulsion Conf. (VPPC), 2010, pp. 15.
    21. 21)
      • 21. Tenner, S., Gimther, S., Hofmann, W.: ‘Loss minimization of electric drive systems using a DC/DC converter and an optimized battery voltage in automotive applications’. IEEE Vehicle Power and Propulsion Conf. (VPPC), Chicago, IL, 2011, pp. 17.
    22. 22)
      • 22. Yu, C.-Y., Tamura, J., Lorenz, R.D.: ‘Optimum DC bus voltage analysis and calculation method for inverters/motors with variable DC bus voltage’, IEEE Trans. Ind. Appl., 2013, 49, (6), pp. 26192627.
    23. 23)
      • 23. Song, Y., Wang, B.: ‘Evaluation methodology and control strategies for improving reliability of HEV power electronic system’, IEEE Trans. Veh. Technol., 2014, 63, (8), pp. 36613676.
    24. 24)
      • 24. Estima, J.O., Marques Cardoso, A.J.: ‘Efficiency analysis of drive train topologies applied to electric/hybrid vehicles’, IEEE Trans. Veh. Technol., 2012, 61, (3), pp. 10211031.
    25. 25)
      • 25. Deng, W., Zhao, Y., Wu, J.: ‘Energy efficiency improvement via Bus voltage control of inverter for electric vehicles’, IEEE Trans. Veh. Technol., 2017, 66, (2), pp. 10631073.
    26. 26)
      • 26. Sridharan, S., Krein, P.T.: ‘Optimizing variable DC link voltage for an induction motor drive under dynamic conditions’. Proc. IEEE ITEC'15, Dearborn, MI, 2015, pp. 16.
    27. 27)
      • 27. Prabhakar, K.K., Ramesh, M., Dalal, A., et al: ‘Efficiency investigation for electric vehicle powertrain with variable DC-link bus voltage’. IECON 2016 – 42nd Annual Conf. of the IEEE Industrial Electronics Society, Florence, Italy, 2016, pp. 17961801.
    28. 28)
      • 28. Kim, J.-H., Choi, J.-W., Sul, S.-K.: ‘Novel rotor-flux observer using observer characteristic function in complex vector space for field-oriented induction motor drives’, IEEE Trans. Ind. Appl., 2002, 38, (5), pp. 13341343.
    29. 29)
      • 29. Vasic, V., Vukosavic, S.N., Levi, E.: ‘A stator resistance estimation scheme for speed sensorless rotor flux oriented induction motor drives’, IEEE Trans. Energy Convers., 2003, 18, (4), pp. 476483.
    30. 30)
      • 30. Kaboli, S., Zolghadri, M.R., Vahdati-Khajeh, E.: ‘A fast flux search controller for DTC-based induction motor drives’, IEEE Trans. Ind. Electron., 2007, 54, (5), pp. 24072416.
    31. 31)
      • 31. Wang, Y., Ito, T., Lorenz, R.D.: ‘Loss manipulation capabilities of deadbeat direct torque and flux control induction machine drives’, IEEE Trans. Industry. Appl., 2015, 51, (6), pp. 45544566.
    32. 32)
      • 32. ROHM Semiconductor: ‘SCT2280KE, N-channel SIC power MOSFET’, Technical Datasheet, 2003.
    33. 33)
      • 33. Agilent Technologies: ‘HPCL-3120, 2.0 A output current IGBT gate drive optocoupler’, Technical Datasheet., 1999.
    34. 34)
      • 34. Fairchild Semiconductor: ‘FGH40N60SFD 600 V, 40 A field stop IGBT’, Technical Datasheet, 2008.
    35. 35)
      • 35. International Rectifier: ‘IR2130 3-phase bridge driver’, Technical Datasheet, 2004.
    36. 36)
      • 36. Rashid, M.H.: ‘Power electronics: circuits, devices & applications’ (Prentice-Hall, New Jersey, 2014).
    37. 37)
      • 37. Ambrozic, V., Bertoluzzo, M., Buja, G.S., et al: ‘An assessment of the inverter switching characteristics in DTC induction motor drives’, IEEE Trans. Power Electron., 2005, 20, (2), pp. 457465.
    38. 38)
      • 38. Buja, G.S., Kazmierkowski, M.P.: ‘Direct torque control of PWM inverter-fed AC motors – a survey’, IEEE Trans. Ind. Electron., 2004, 51, (4), pp. 744757.
    39. 39)
      • 39. Graovac, D., Purschel, M.: ‘IGBT power losses calculation using the data-sheet parameters’, Infineon Appl. Note, 2009, 1.1, pp. 116.
    40. 40)
      • 40. Ehsani, M., Gao, Y., Emadi, A.: ‘Modern electric, hybrid electric, and fuel cell vehicles: fundamentals, theory, and design’ (CRC Press, Taylor & Francis Group, 2010).
    41. 41)
      • 41. Farasat, M., Trzynadlowski, A.M., Fadali, M.S.: ‘Efficiency improved sensorless control scheme for electric vehicle induction motors’, IET Electr. Syst. Transp., 2014, 4, (4), pp. 122131.
    42. 42)
      • 42. Haddoun, A., Benbouzid, M.E.H., Diallo, D., et al: ‘A loss-minimization DTC scheme for EV induction motors’, IEEE Trans. Veh. Technol., 2007, 54, (1), pp. 8188.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2017.0086
Loading

Related content

content/journals/10.1049/iet-est.2017.0086
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address