http://iet.metastore.ingenta.com
1887

SiC + Si three-phase 48 V electric vehicle battery charger employing current-SVPWM controlled SWISS AC/DC and variable-DC-bus DC/DC converters

SiC + Si three-phase 48 V electric vehicle battery charger employing current-SVPWM controlled SWISS AC/DC and variable-DC-bus DC/DC converters

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Electrical Systems in Transportation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Wide-bandgap (WBG) devices such as SiC and GaN switches are regarded as next-generation power semiconductors, due to their superior performance over conventional Si devices, for instance, a low switching loss and high thermal conductivity. Its bottleneck, however, is the high cost, which is critical for renewable energy and automotive industries. This study adopts SWISS AC/DC rectifier topology for the three-phase 380–480 VAC along with an isolated DC/DC converter, indicating such topology can maximise the advantages of Si (low conduction loss) and SiC (high switching loss), altogether thereby yielding the high performance and low cost. A novel space-vector pulse width modulation (SVPWM) was proposed to control such a current-source power factor correction, where only two SiC devices were adopted for the DC-bus voltage control. The closed-loop control of the grid current is realised for the unity power factor. Such topology further allows the DC-bus voltage to be varied with the output voltage, thereby minimising the system loss. A final prototype was built to charge a 48 V battery at 11 kW. Experimental results validated the effectiveness of such battery charger design.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2017.0083
Loading

Related content

content/journals/10.1049/iet-est.2017.0083
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address