http://iet.metastore.ingenta.com
1887

Methodology to qualify marine electrical propulsion system architectures for platform supply vessels

Methodology to qualify marine electrical propulsion system architectures for platform supply vessels

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Electrical Systems in Transportation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Conventional diesel-electric propulsion systems in platform supply vessels (PSVs) use low-voltage AC (LVAC) supply-based architecture with multiple diesel-generators feeding busbars at 690 V, 60 Hz. The busbars distribute power to thruster motor drives via multi-pulse transformers and diode bridge rectifiers. Advancements in electrical power conversion and distribution technologies offer possibilities of AC or DC distribution at low/medium voltage (LV/MV) for reduced fuel consumption (FC), emissions, and equipment footprint. This study presents methodology to qualify propulsion system architecture for PSV application. Potential architectures, besides conventional one, are active front end (AFE) converter-based LVAC (690 V), MVAC (3.3 kV), LVDC (1000 V), and MVDC (5000 V). Performances of these architectures are assessed quantitatively based on FC, emissions, weight, volume, efficiency, and reliability. FC is estimated based on brake-specific FC data of diesel engine. , , and emissions are assessed based on their emission factors. The weight, volume, and efficiency are estimated based on parameters of individual components. Reliability is assessed based on component failure data using DIgSILENT Power Factory. The architectures are ranked based on performance parameters using a Pugh matrix. The most suitable architecture for the target PSV is LVDC, followed by MVDC, LVAC with AFE, MVAC, and conventional LVAC.

References

    1. 1)
      • 1. Mordor Intelligence: ‘Global offshore support vessels market outlook to 2020’, 2017, p. 11.
        . , 11
    2. 2)
      • B.D. Reddy , M. Chai , S. Lingeshwaren .
        2. Reddy, B.D., Chai, M., Lingeshwaren, S., et al: ‘Investigations on active front-end and active filter based LVAC power architectures of diesel electric propulsion system for diving support vessels’. 42nd Annual Conf. of the IEEE Industrial Electronics Society IECON, Florence, 2016, pp. 44194422.
        . 42nd Annual Conf. of the IEEE Industrial Electronics Society IECON , 4419 - 4422
    3. 3)
      • (2012)
        3. International Council on Clean Transportation: ‘Global transportation energy and climate roadmap’, 2012, pp. 4045.
        .
    4. 4)
      • J.M. Prousalidis , G.J. Tsekouras , F. Kanellos .
        4. Prousalidis, J.M., Tsekouras, G.J., Kanellos, F.: ‘New challenges emerged from the development of more efficient electric energy generation units’. IEEE Electric Ship Technologies Symp., April 2011, pp. 374381.
        . IEEE Electric Ship Technologies Symp. , 374 - 381
    5. 5)
      • J.F. Hansen .
        5. Hansen, J.F.: ‘Modeling and Control of Marine Power Systems’. PhD thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2000.
        .
    6. 6)
      • 6. MAN Diesel & Turbo: ‘EPROX energy saving electric propulsion system’, 2017, pp. 16.
        . , 1 - 6
    7. 7)
      • 7. Siemens: ‘Bluedrive PlusC: makes vessels safer, more profitable and environmentally friendly marine and shipbuilding’, 2017, pp. 19.
        . , 1 - 9
    8. 8)
      • 8. ABB: ‘Onboard DC grid: the step forward in power generation and propulsion’, 2011, pp. 14.
        . , 1 - 4
    9. 9)
      • J.S. Chalfant , C. Chryssostomidis .
        9. Chalfant, J.S., Chryssostomidis, C.: ‘Analysis of various all-electric-ship electrical distribution system topologies’. IEEE Electric Ship Technologies Symp., April 2011, pp. 7277.
        . IEEE Electric Ship Technologies Symp. , 72 - 77
    10. 10)
      • W. Wu , D. Wang , A. Arapostathis .
        10. Wu, W., Wang, D., Arapostathis, A., et al: ‘Optimal power generation scheduling of shipboard power system’. IEEE Electric Ship Technologies Symp., May 2007, pp. 519522.
        . IEEE Electric Ship Technologies Symp. , 519 - 522
    11. 11)
      • P. Yadav .
        11. Yadav, P.: ‘Analysis, design and optimization of offshore power system network’. PhD thesis, National University of Singapore, Singapore, 2013, pp. 6988.
        . , 69 - 88
    12. 12)
      • K.S. Rao , P.J. Chauhan , S.K. Panda .
        12. Rao, K.S., Chauhan, P.J., Panda, S.K., et alAn exercise to qualify LVAC and LVDC power system architectures for a platform supply vessel’. IEEE Transportation Electrification Conf. and Expo, Asia-Pacific, Busan, June 2016, pp. 332337.
        . IEEE Transportation Electrification Conf. and Expo , 332 - 337
    13. 13)
      • 13. E.R. Offshore: ‘Platform supply vessel (DP2), UT 776 CD’, 2017, pp. 14.
        . , 1 - 4
    14. 14)
      • 14. MTU Ffiedrichshafen GmbH: ‘Technical project guide marine application part 1, general’, 2003, p. 24.
        . , 24
    15. 15)
      • S. Pugh . (1991)
        15. Pugh, S.: ‘Total design: integrated methods for successful product engineering’ (McGraw-Hill, New York, 1991).
        .
    16. 16)
      • B. Zahedi , L. Norum , K. Ludvigsen .
        16. Zahedi, B., Norum, L., Ludvigsen, K.: ‘Optimized efficiency of all-electric ships by dc hybrid power systems’, J. Power Sources, 2014, 255, pp. 341354.
        . J. Power Sources , 341 - 354
    17. 17)
      • 17. FKI Energy Technology: ‘Three phase synchronous generators for marine applications’, 2017, pp. 116.
        . , 1 - 16
    18. 18)
      • 18. AEI Cables: ‘Oil, gas & marine products’, 2017, pp. 12.
        . , 1 - 2
    19. 19)
      • 19. IEC: ‘International standards for all electrical and electronic technologies’. Available at http://www.iec.ch/perspectives/government/sectors/ships_maritime.htm, accessed April 2017.
        .
    20. 20)
      • 20. Rolls-Royce: ‘Marine products & systems’, 2017, pp. 3339.
        . , 33 - 39
    21. 21)
      • 21. ABB: ‘SACE emax 2 new low voltage air circuit-breakers’, 2017, pp. 1819.
        . , 18 - 19
    22. 22)
      • 22. GE Energy: ‘Secovac VB2 plus circuit breaker user manual’, 2017, pp. 38.
        . , 3 - 8
    23. 23)
      • (2017)
        23. SIBA: ‘Fuses for DC and traction applications’, 2017, pp. 230235.
        .
    24. 24)
      • 24. Cooper Bussmann: ‘Cooper Bussmann high voltage DC traction fuses’, 2017, p. 23.
        . , 23
    25. 25)
      • 25. Mersen: ‘Implementation of parallel fuses’, 2017, pp. 18.
        . , 1 - 8
    26. 26)
      • 26. Eaton: ‘Distribution dry-type transformers low voltage’, 2013, pp. 12.
        . , 1 - 2
    27. 27)
      • 27. EMG: ‘Dry type transformers for marine applications’. Available at http://www.emgtrasformatori.it/en/products/dry-type-transformers.html, accessed April 2017.
        .
    28. 28)
      • 28. ABB: ‘MNS low voltage switchgear system guide’, 2012, pp. 89.
        . , 8 - 9
    29. 29)
      • 29. GE Energy: ‘3.3–27 kV air insulated switch gear for industrial solutions’, 2014, pp. 3839.
        . , 38 - 39
    30. 30)
      • 30. MarelliMotori: ‘Marine applications selection guide’, 2016, pp. 4849.
        . , 48 - 49
    31. 31)
      • 31. ABB: ‘High voltage induction motors technical catalogue’, 2016, pp. 2223.
        . , 22 - 23
    32. 32)
      • 32. Vacon: ‘Low harmonic products for clean power solutions’, 2014, pp. 812.
        . , 8 - 12
    33. 33)
      • 33. GE Energy: ‘MV4 series: the compact, general purpose medium voltage drive’, 2017, pp. 79.
        . , 7 - 9
    34. 34)
      • K.S. Rao , P.J. Chauhan , S.K. Panda .
        34. Rao, K.S., Chauhan, P.J., Panda, S.K., et al: ‘Optimal scheduling of diesel generators in offshore support vessels to minimize fuel consumption’. 41st Annual Conf. of the IEEE Industrial Electronics Society IECON, Yokohama, November 2015, pp. 47264731.
        . 41st Annual Conf. of the IEEE Industrial Electronics Society IECON , 4726 - 4731
    35. 35)
      • P.J. Chauhan , K.S. Rao , S.K. Panda .
        35. Chauhan, P.J., Rao, K.S., Panda, S.K., et al: ‘Fuel efficiency improvement by optimal scheduling of diesel generators using PSO in offshore support vessel with DC power system architecture’. IEEE PES Asia-Pacific Power and Energy Engineering Conf., Brisbane, 2015, p. 16.
        . IEEE PES Asia-Pacific Power and Energy Engineering Conf. , 1 - 6
    36. 36)
      • J.F. Hansen , F. Wendt .
        36. Hansen, J.F., Wendt, F.: ‘History and state of the art in commercial electric ship propulsion, integrated power systems, and future trends’. Proc. of the IEEE, 2015, vol. 103, pp. 22292242.
        . Proc. of the IEEE , 2229 - 2242
    37. 37)
      • P. Jun , M. Gillenwater , W. Barbour .
        37. Jun, P., Gillenwater, M., Barbour, W.: ‘CO2, CH4, and N2O emissions from transportation waterborne navigation’. Guidance and Uncertainty Management in National Greenhouse Gas Inventories, 2002, pp. 7192.
        . Guidance and Uncertainty Management in National Greenhouse Gas Inventories , 71 - 92
    38. 38)
      • C. Trozzi .
        38. Trozzi, C.: ‘Emission estimate methodology for maritime navigation’. 19th Annual Int. Emission Inventory Conf. Emissions Inventories – Informing Emerging Issues, San Antonio, USA, 2010, pp. 112.
        . 19th Annual Int. Emission Inventory Conf. Emissions Inventories – Informing Emerging Issues , 1 - 12
    39. 39)
      • 39. Lloyd's Register: ‘Marine exhaust emissions research programme’, 1999, pp. 423.
        . , 4 - 23
    40. 40)
      • 40. Revised IPCC Guidelines for National Greenhouse Gas Inventories: ‘Intergovernmental Panel on Climate Change, United Nations Environment Programme, Organization for Economic Co-operation and Development, International Energy Agency’, 1996, pp. 16.
        . , 1 - 6
    41. 41)
      • 41. U.S. Environmental Protection Agency: ‘Current methodologies in preparing mobile source port-related emission inventories report’, 2009, pp. 2.132.19.
        . , 2.13 - 2.19
    42. 42)
      • A.W. Schneider , J. Raksany , R.O. Gunderson .
        42. Schneider, A.W.Jr, Raksany, J., Gunderson, R.O., et al: ‘Bulk system reliability-measurement and indices’, IEEE Trans. Power Syst., 1989, 4, pp. 829835.
        . IEEE Trans. Power Syst. , 829 - 835
    43. 43)
      • 43. DIgSILENT GmbH: ‘DIgSILENT PF V15 user Manual’, 2014, pp. 721754.
        . , 721 - 754
    44. 44)
      • (2007)
        44. IEEE Std 493: ‘IEEE Recommended Practice for the Design of Reliable Industrial and Commercial Power Systems, 2007.
        .
    45. 45)
      • P.J. Chauhan , K. Srinivasa Rao , M. Sai Srinivas .
        45. Chauhan, P.J., Srinivasa Rao, K., Sai Srinivas, M., et al: ‘A graphical user interface tool for early design stage evaluation of marine vessels power system Architectures’. Int. Maritime-Port Technology and Development Conf. (MTEC), April 2017, pp. 6988.
        . Int. Maritime-Port Technology and Development Conf. (MTEC) , 69 - 88
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2017.0080
Loading

Related content

content/journals/10.1049/iet-est.2017.0080
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address