Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Single-stage ZETA-SEPIC-based multifunctional integrated converter for plug-in electric vehicles

A single-stage-based integrated power electronic converter has been proposed for plug-in electric vehicles (PEVs). The proposed converter achieves all modes of vehicle operation, i.e. plug-in charging, propulsion and regenerative braking modes with wide voltage conversion ratio (M) [M < 1 as well as M > 1] in each mode. Therefore, a wide variation of battery voltage can be charged from the universal input voltage (90–260 V) and allowing more flexible control for capturing regenerative braking energy and dc-link voltage. The proposed converter has least components compared to those existing converters which have stepping up and stepping down capability in all modes. Moreover, a single switch operates in pulse width modulation in each mode of converter operation hence control system design becomes simpler and easy to implement. To correctly select the power stage switches, a loss analysis of the proposed converter has been investigated in ac/dc and dc/dc stages. Both simulation and experimental results are presented to validate the operation of the converter.

References

    1. 1)
      • 25. Mahdavi, M., Farzanehfard, H.: ‘Bridgeless SEPIC PFC rectifier with reduced components and conduction losses’, IEEE Trans. Ind. Electron., 2011, 58, (9), pp. 41534160.
    2. 2)
      • 18. Musavi, F., Eberle, W., Dunford, W.G.: ‘A high-performance single-phase bridgeless interleaved PFC converter for plug-in hybrid electric vehicle battery chargers’, IEEE Trans. Ind. Appl., 2011, 47, (4), pp. 18331843.
    3. 3)
      • 7. Qian, W., Cha, H., Peng, F.Z., et al: ‘55-kW variable 3X DC-DC converter for plug-in hybrid electric vehicles’, IEEE Trans. Power Electron., 2012, 27, (4), pp. 16681678.
    4. 4)
      • 21. Morcos, M.M., Dillman, N.G., Mersman, C.R.: ‘Battery chargers for electric vehicles’, IEEE Power Eng. Rev., 2000, 20, (11), pp. 811, 18.
    5. 5)
      • 16. Patil, D., Agarwal, V.: ‘Compact onboard single-phase EV battery charger with novel low-frequency ripple compensator and optimum filter design’, IEEE Trans. Veh. Technol., 2016, 65, (4), pp. 19481956.
    6. 6)
      • 1. Chan, C.C., Chau, K.T.: ‘An overview of power electronics in electric vehicles’, IEEE Trans. Ind. Electron., 1997, 44, (1), pp. 313.
    7. 7)
      • 17. Oh, C.Y., Kim, D.H., Woo, D.G., et al: ‘A high-efficient nonisolated single-stage on-board battery charger for electric vehicles’, IEEE Trans. Power Electron., 2013, 28, (12), pp. 57465757.
    8. 8)
      • 2. Emadi, A., Lee, Y.J., Rajashekara, K.: ‘Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles’, IEEE Trans. Ind. Electron., 2008, 55, (6), pp. 22372245.
    9. 9)
      • 13. Kong, P.Y., Aziz, J.A., Sahid, M.R., et al: ‘A bridgeless PFC converter for on-board battery charger’. IEEE Conf. Energy Conversion (CENCON), 2014, pp. 383388.
    10. 10)
      • 19. Egan, M.G., O'Sullivan, D.L., Hayes, J.G., et al: ‘Power-factor-corrected single-stage inductive charger for electric vehicle batteries’, IEEE Trans. Ind. Electron., 2007, 54, (2), pp. 12171226.
    11. 11)
      • 20. Bai, H., Zhang, Y., Semanson, C., et al: ‘Modelling, design and optimisation of a battery charger for plug-in hybrid electric vehicles’, IET Electr. Syst. Transp., 2011, 1, (1), pp. 310.
    12. 12)
      • 10. Dusmez, S., Khaligh, A.: ‘A compact and integrated multifunctional power electronic interface for plug-in electric vehicles’, IEEE Trans. Power Electron., 2013, 28, (12), pp. 56905701.
    13. 13)
      • 8. Park, T., Kim, T.: ‘Novel energy conversion system based on a multimode single-leg power converter’, IEEE Trans. Power Electron., 2013, 28, (1), pp. 213220.
    14. 14)
      • 6. Aharon, I., Kuperman, A.: ‘Topological overview of powertrains for battery-powered vehicles with range extenders’, IEEE Trans. Power Electron., 2011, 26, (3), pp. 868876.
    15. 15)
      • 23. Singh, S., Singh, B., Bhuvaneswari, G., et al: ‘Power factor corrected zeta converter based improved power quality switched mode power supply’, IEEE Trans. Ind. Electron., 2015, 62, (9), pp. 54225433.
    16. 16)
      • 26. Singh, S., Singh, B., Bhuvaneswari, G., et al: ‘A power quality improved bridgeless converter-based computer power supply’, IEEE Trans. Ind. Appl., 2016, 52, (5), pp. 43854394.
    17. 17)
      • 5. McGrath, B.P., Holmes, D.G., McGoldrick, P.J., et al: ‘Design of a soft-switched 6-kW battery charger for traction applications’, IEEE Trans. Power Electron., 2007, 22, (4), pp. 11361144.
    18. 18)
      • 22. Kim, J.S., Choe, G.Y., Jung, H.M., et al: ‘Design and implementation of a high-efficiency on- board battery charger for electric vehicles with frequency control strategy’. IEEE Vehicle Power and Propulsion Conf., 2010, pp. 16.
    19. 19)
      • 14. Shi, C., Wang, H., Dusmez, S., et al: ‘A SiC-based high-efficiency isolated onboard PEV charger with ultrawide dc-link voltage range’, IEEE Trans. Ind. Appl., 2017, 53, (1), pp. 501511.
    20. 20)
      • 24. Vlatkovic, V., Borojevic, D., Lee, F.C.: ‘Input filter design for power factor correction circuits’, IEEE Trans. Power Electron., 1996, 11, (1), pp. 199205.
    21. 21)
      • 9. Lee, Y.J., Khaligh, A., Emadi, A.: ‘Advanced integrated bidirectional AC/DC and DC/DC converter for plug-in hybrid electric vehicles’, IEEE Trans. Veh. Technol., 2009, 58, (8), pp. 39703980.
    22. 22)
      • 3. Singh, A.K., Pathak, M.K.: ‘An improved two-stage non-isolated converter for on-board plug-in hybrid EV battery charger’. IEEE 1st Int. Conf. Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 2016. pp. 16.
    23. 23)
      • 11. Dusmez, S., Khaligh, A.: ‘A charge-nonlinear-carrier-controlled reduced-part single-stage integrated power electronics interface for automotive applications’, IEEE Trans. Veh. Technol., 2014, 63, (3), pp. 10911103.
    24. 24)
      • 15. Patil, D., Sinha, M., Agarwal, V.: ‘A CuK converter based bridgeless topology for high power factor fast battery charger for electric vehicle application’. IEEE Transportation Electrification Conf. Expo (ITEC), 2012, pp. 16.
    25. 25)
      • 4. Musavi, F., Edington, M., Eberle, W., et al: ‘Evaluation and efficiency comparison of front end ac-dc plug-in hybrid charger topologies’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 413421.
    26. 26)
      • 12. Tang, Y., Zhu, D., Jin, C., et al: ‘A three-level quasi-two-stage single-phase PFC converter with flexible output voltage and improved conversion efficiency’, IEEE Trans. Power Electron., 2015, 30, (2), pp. 717726.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2017.0063
Loading

Related content

content/journals/10.1049/iet-est.2017.0063
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address