http://iet.metastore.ingenta.com
1887

Single-stage ZETA-SEPIC-based multifunctional integrated converter for plug-in electric vehicles

Single-stage ZETA-SEPIC-based multifunctional integrated converter for plug-in electric vehicles

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Electrical Systems in Transportation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A single-stage-based integrated power electronic converter has been proposed for plug-in electric vehicles (PEVs). The proposed converter achieves all modes of vehicle operation, i.e. plug-in charging, propulsion and regenerative braking modes with wide voltage conversion ratio (M) [M < 1 as well as M > 1] in each mode. Therefore, a wide variation of battery voltage can be charged from the universal input voltage (90–260 V) and allowing more flexible control for capturing regenerative braking energy and dc-link voltage. The proposed converter has least components compared to those existing converters which have stepping up and stepping down capability in all modes. Moreover, a single switch operates in pulse width modulation in each mode of converter operation hence control system design becomes simpler and easy to implement. To correctly select the power stage switches, a loss analysis of the proposed converter has been investigated in ac/dc and dc/dc stages. Both simulation and experimental results are presented to validate the operation of the converter.

References

    1. 1)
      • C.C. Chan , K.T. Chau .
        1. Chan, C.C., Chau, K.T.: ‘An overview of power electronics in electric vehicles’, IEEE Trans. Ind. Electron., 1997, 44, (1), pp. 313.
        . IEEE Trans. Ind. Electron. , 1 , 3 - 13
    2. 2)
      • A. Emadi , Y.J. Lee , K. Rajashekara .
        2. Emadi, A., Lee, Y.J., Rajashekara, K.: ‘Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles’, IEEE Trans. Ind. Electron., 2008, 55, (6), pp. 22372245.
        . IEEE Trans. Ind. Electron. , 6 , 2237 - 2245
    3. 3)
      • A.K. Singh , M.K. Pathak .
        3. Singh, A.K., Pathak, M.K.: ‘An improved two-stage non-isolated converter for on-board plug-in hybrid EV battery charger’. IEEE 1st Int. Conf. Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 2016. pp. 16.
        . IEEE 1st Int. Conf. Power Electronics, Intelligent Control and Energy Systems (ICPEICES) , 1 - 6
    4. 4)
      • F. Musavi , M. Edington , W. Eberle .
        4. Musavi, F., Edington, M., Eberle, W., et al: ‘Evaluation and efficiency comparison of front end ac-dc plug-in hybrid charger topologies’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 413421.
        . IEEE Trans. Smart Grid , 1 , 413 - 421
    5. 5)
      • B.P. McGrath , D.G. Holmes , P.J. McGoldrick .
        5. McGrath, B.P., Holmes, D.G., McGoldrick, P.J., et al: ‘Design of a soft-switched 6-kW battery charger for traction applications’, IEEE Trans. Power Electron., 2007, 22, (4), pp. 11361144.
        . IEEE Trans. Power Electron. , 4 , 1136 - 1144
    6. 6)
      • I. Aharon , A. Kuperman .
        6. Aharon, I., Kuperman, A.: ‘Topological overview of powertrains for battery-powered vehicles with range extenders’, IEEE Trans. Power Electron., 2011, 26, (3), pp. 868876.
        . IEEE Trans. Power Electron. , 3 , 868 - 876
    7. 7)
      • W. Qian , H. Cha , F.Z. Peng .
        7. Qian, W., Cha, H., Peng, F.Z., et al: ‘55-kW variable 3X DC-DC converter for plug-in hybrid electric vehicles’, IEEE Trans. Power Electron., 2012, 27, (4), pp. 16681678.
        . IEEE Trans. Power Electron. , 4 , 1668 - 1678
    8. 8)
      • T. Park , T. Kim .
        8. Park, T., Kim, T.: ‘Novel energy conversion system based on a multimode single-leg power converter’, IEEE Trans. Power Electron., 2013, 28, (1), pp. 213220.
        . IEEE Trans. Power Electron. , 1 , 213 - 220
    9. 9)
      • Y.J. Lee , A. Khaligh , A. Emadi .
        9. Lee, Y.J., Khaligh, A., Emadi, A.: ‘Advanced integrated bidirectional AC/DC and DC/DC converter for plug-in hybrid electric vehicles’, IEEE Trans. Veh. Technol., 2009, 58, (8), pp. 39703980.
        . IEEE Trans. Veh. Technol. , 8 , 3970 - 3980
    10. 10)
      • S. Dusmez , A. Khaligh .
        10. Dusmez, S., Khaligh, A.: ‘A compact and integrated multifunctional power electronic interface for plug-in electric vehicles’, IEEE Trans. Power Electron., 2013, 28, (12), pp. 56905701.
        . IEEE Trans. Power Electron. , 12 , 5690 - 5701
    11. 11)
      • S. Dusmez , A. Khaligh .
        11. Dusmez, S., Khaligh, A.: ‘A charge-nonlinear-carrier-controlled reduced-part single-stage integrated power electronics interface for automotive applications’, IEEE Trans. Veh. Technol., 2014, 63, (3), pp. 10911103.
        . IEEE Trans. Veh. Technol. , 3 , 1091 - 1103
    12. 12)
      • Y. Tang , D. Zhu , C. Jin .
        12. Tang, Y., Zhu, D., Jin, C., et al: ‘A three-level quasi-two-stage single-phase PFC converter with flexible output voltage and improved conversion efficiency’, IEEE Trans. Power Electron., 2015, 30, (2), pp. 717726.
        . IEEE Trans. Power Electron. , 2 , 717 - 726
    13. 13)
      • P.Y. Kong , J.A. Aziz , M.R. Sahid .
        13. Kong, P.Y., Aziz, J.A., Sahid, M.R., et al: ‘A bridgeless PFC converter for on-board battery charger’. IEEE Conf. Energy Conversion (CENCON), 2014, pp. 383388.
        . IEEE Conf. Energy Conversion (CENCON) , 383 - 388
    14. 14)
      • C. Shi , H. Wang , S. Dusmez .
        14. Shi, C., Wang, H., Dusmez, S., et al: ‘A SiC-based high-efficiency isolated onboard PEV charger with ultrawide dc-link voltage range’, IEEE Trans. Ind. Appl., 2017, 53, (1), pp. 501511.
        . IEEE Trans. Ind. Appl. , 1 , 501 - 511
    15. 15)
      • D. Patil , M. Sinha , V. Agarwal .
        15. Patil, D., Sinha, M., Agarwal, V.: ‘A CuK converter based bridgeless topology for high power factor fast battery charger for electric vehicle application’. IEEE Transportation Electrification Conf. Expo (ITEC), 2012, pp. 16.
        . IEEE Transportation Electrification Conf. Expo (ITEC) , 1 - 6
    16. 16)
      • D. Patil , V. Agarwal .
        16. Patil, D., Agarwal, V.: ‘Compact onboard single-phase EV battery charger with novel low-frequency ripple compensator and optimum filter design’, IEEE Trans. Veh. Technol., 2016, 65, (4), pp. 19481956.
        . IEEE Trans. Veh. Technol. , 4 , 1948 - 1956
    17. 17)
      • C.Y. Oh , D.H. Kim , D.G. Woo .
        17. Oh, C.Y., Kim, D.H., Woo, D.G., et al: ‘A high-efficient nonisolated single-stage on-board battery charger for electric vehicles’, IEEE Trans. Power Electron., 2013, 28, (12), pp. 57465757.
        . IEEE Trans. Power Electron. , 12 , 5746 - 5757
    18. 18)
      • F. Musavi , W. Eberle , W.G. Dunford .
        18. Musavi, F., Eberle, W., Dunford, W.G.: ‘A high-performance single-phase bridgeless interleaved PFC converter for plug-in hybrid electric vehicle battery chargers’, IEEE Trans. Ind. Appl., 2011, 47, (4), pp. 18331843.
        . IEEE Trans. Ind. Appl. , 4 , 1833 - 1843
    19. 19)
      • M.G. Egan , D.L. O'Sullivan , J.G. Hayes .
        19. Egan, M.G., O'Sullivan, D.L., Hayes, J.G., et al: ‘Power-factor-corrected single-stage inductive charger for electric vehicle batteries’, IEEE Trans. Ind. Electron., 2007, 54, (2), pp. 12171226.
        . IEEE Trans. Ind. Electron. , 2 , 1217 - 1226
    20. 20)
      • H. Bai , Y. Zhang , C. Semanson .
        20. Bai, H., Zhang, Y., Semanson, C., et al: ‘Modelling, design and optimisation of a battery charger for plug-in hybrid electric vehicles’, IET Electr. Syst. Transp., 2011, 1, (1), pp. 310.
        . IET Electr. Syst. Transp. , 1 , 3 - 10
    21. 21)
      • M.M. Morcos , N.G. Dillman , C.R. Mersman .
        21. Morcos, M.M., Dillman, N.G., Mersman, C.R.: ‘Battery chargers for electric vehicles’, IEEE Power Eng. Rev., 2000, 20, (11), pp. 811, 18.
        . IEEE Power Eng. Rev. , 11 , 8 - 11, 18
    22. 22)
      • J.S. Kim , G.Y. Choe , H.M. Jung .
        22. Kim, J.S., Choe, G.Y., Jung, H.M., et al: ‘Design and implementation of a high-efficiency on- board battery charger for electric vehicles with frequency control strategy’. IEEE Vehicle Power and Propulsion Conf., 2010, pp. 16.
        . IEEE Vehicle Power and Propulsion Conf. , 1 - 6
    23. 23)
      • S. Singh , B. Singh , G. Bhuvaneswari .
        23. Singh, S., Singh, B., Bhuvaneswari, G., et al: ‘Power factor corrected zeta converter based improved power quality switched mode power supply’, IEEE Trans. Ind. Electron., 2015, 62, (9), pp. 54225433.
        . IEEE Trans. Ind. Electron. , 9 , 5422 - 5433
    24. 24)
      • V. Vlatkovic , D. Borojevic , F.C. Lee .
        24. Vlatkovic, V., Borojevic, D., Lee, F.C.: ‘Input filter design for power factor correction circuits’, IEEE Trans. Power Electron., 1996, 11, (1), pp. 199205.
        . IEEE Trans. Power Electron. , 1 , 199 - 205
    25. 25)
      • M. Mahdavi , H. Farzanehfard .
        25. Mahdavi, M., Farzanehfard, H.: ‘Bridgeless SEPIC PFC rectifier with reduced components and conduction losses’, IEEE Trans. Ind. Electron., 2011, 58, (9), pp. 41534160.
        . IEEE Trans. Ind. Electron. , 9 , 4153 - 4160
    26. 26)
      • S. Singh , B. Singh , G. Bhuvaneswari .
        26. Singh, S., Singh, B., Bhuvaneswari, G., et al: ‘A power quality improved bridgeless converter-based computer power supply’, IEEE Trans. Ind. Appl., 2016, 52, (5), pp. 43854394.
        . IEEE Trans. Ind. Appl. , 5 , 4385 - 4394
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2017.0063
Loading

Related content

content/journals/10.1049/iet-est.2017.0063
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address