Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Analysis of double-sided sandwiched linear flux-switching permanent-magnet machines with staggered stator teeth for urban rail transit

Linear flux-switching permanent-magnet (LFSPM) machines exhibit significant potential in many applications. A double-sided sandwiched LFSPM (DSSLFSPM) machine with high thrust force capability is investigated in this study. After being optimised for optimal thrust force using Maxwell 2D, this machine is found to deliver higher thrust force when compared with an optimised conventional 12/14 LFSPM machine. However, low thrust force ripple is also required in many applications. Thus, in order to reduce the thrust force ripple, the DSSLFSPM machine is improved by a staggered stator teeth structure and an end permanent-magnets method, then, two improved machines are obtained. The improved machines can reduce the thrust ripple to a very low level without thrust force density decrease. Further, the stator yoke thickness of the improved machines is optimised to reach optimal thrust force density. Finally, the performance of the DSSLFSPM-ST machines is analysed including the normal force, the efficiency and the power factor. It shows that the improved DSSLFSPM machines exhibit relatively low normal force and high thrust force density as well as low thrust ripples, indicating that they are suitable for long-stroke applications.

References

    1. 1)
      • 7. Walter, C.S., Polinder, H., Ferreira, J.A.: ‘High-torque-density high-efficiency flux-switching PM machine for aerospace applications’, IEEE J. Emerging Sel. Top. Power Electron., 2013, 1, (4), pp. 327336.
    2. 2)
      • 4. Hellinger, R., Mnich, P.: ‘Linear motor-powered transportation: history, present status, future outlook’, Proc. IEEE, 2009, 97, (11), pp. 18921900.
    3. 3)
      • 2. Young-Kyoun, K., Bon-Gwan, G., In-Soung, J., et al: ‘Analysis and design of slotted tubular linear actuator for the eco-pedal system of a vehicle’, IEEE Trans. Magn., 2012, 48, (2), pp. 939942.
    4. 4)
      • 13. Krop, D., Encica, L., Lomonova, E.: ‘Analysis of a novel double sided flux switching linear motor topology’. Proc. Elect. Mach. (ICEM) XIX Int. Conf., September 2010, pp. 15.
    5. 5)
      • 14. Hao, W., Wang, Y., Deng, Z.: ‘Study of two kinds of double-sided yokeless linear flux-switching permanent magnet machines’. Presented at the 2016 IEEE Vehicle Power and Propulsion Conf. (VPPC'2016), Hangzhou, China, October 2016, pp. 16.
    6. 6)
      • 12. Liu, Q., Yu, H., Hu, M., et al: ‘Cogging force reduction of double sided linear flux-switching permanent magnet machine for direct drives’, IEEE Trans. Magn., 2013, 49, (5), pp. 22752278.
    7. 7)
      • 1. Polinder, H., Damen, M.E.C., Gardner, F.: ‘Linear PM generator system for wave energy conversion in the AWS’, IEEE Trans. Energy Convers., 2004, 19, (3), pp. 583589.
    8. 8)
      • 18. Cao, R.W., Cheng, M., Mi, C., et al: ‘Comparison of complementary and modular linear flux-switching motors With different mover and stator pole pitch’, IEEE Trans. Magn., 2013, 49, (4), pp. 14931504.
    9. 9)
      • 19. Cheng, M., Kong, L., Zhang, B., et al: ‘Sensorless vector control of complementary and modular linear flux-switching permanent magnet motor based on MRAS and SVPWM’. Int. Conf. Electrical Machines and Systems(ICEMS'2016), Chiba, Japan, November 2016, pp. 15971602.
    10. 10)
      • 10. Huang, L., Yu, H., Hu, M., et al: ‘A novel flux-switching permanent-magnet linear generator for wave energy extraction application’, IEEE Trans. Magn., 2011, 47, (5), pp. 10341037.
    11. 11)
      • 16. Zhou, Y.J., Zhu, Z.Q.: ‘Torque density and magnet usage efficiency enhancement of sandwiched switched flux permanent magnet machines using V-shaped magnets’, IEEE Trans.Magn., 2013, 49, (7), pp. 38343837.
    12. 12)
      • 17. Min, W., Chen, J., Zhu, Z., et al: ‘Optimization and comparison of novel e-core and c-core linear switched flux PM machines’, IEEE Trans. Magn., 2011, 47, (8), pp. 21342141.
    13. 13)
      • 5. Wang, W.W., Atallah, K.: ‘A linear permanent magnet motor for active vehicle suspension’, IEEE Trans. Veh. Technol., 2011, 60, (1), pp. 5563.
    14. 14)
      • 8. Wang, Y., Deng, Z.: ‘A multi-tooth fault-tolerant flux-switching permanent magnet machine with twisted-rotor’, IEEE Trans.Magn., 2012, 48, (10), pp. 26742684.
    15. 15)
      • 15. Fei, W., Shen, J.: ‘Novel permanent magnet switching flux motors’. Proc. 41st Int. Univ. Power Eng. Conf., 2006, pp. 729733.
    16. 16)
      • 3. Ma, W.Z., Zhang, H.M., Sun, J.Y., et al: ‘Research on the design of linear drive motor of new pumping unit’, Adv. Mater. Res., 2011, 383–390, pp. 13911398.
    17. 17)
      • 11. Cao, R.W., Huang, W., Cheng, M.: ‘A new modular and complementary double-sided linear flux-switching permanent magnet motor with yokeless secondary’. Int. Conf. Electrical Machines and Systems(ICEMS'2014), Hangzhou, China, October 2014, pp. 36483652.
    18. 18)
      • 6. Raminosoa, T., Gerada, C., Galea, M.: ‘Design considerations for a fault-tolerant flux-switching permanent-magnet machine’, IEEE Trans. Ind. Electron., 2011, 58, (7), pp. 28182825.
    19. 19)
      • 9. Wang, C.F., Shen, J.X., Wang, L.L., et al: ‘A novel permanent magnet flux-switching linear motor’. The 4th IET Int. Conf. Power Electronics, Machines and Drives, (PEMD’ 2008), York, UK, April 2008, pp. 116119.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2017.0062
Loading

Related content

content/journals/10.1049/iet-est.2017.0062
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address