http://iet.metastore.ingenta.com
1887

Investigation and design of an axial flux permanent magnet machine for a commercial midsize aircraft electric taxiing system

Investigation and design of an axial flux permanent magnet machine for a commercial midsize aircraft electric taxiing system

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Electrical Systems in Transportation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, an electric taxiing drive system for a commercial midsize aircraft is proposed. Four electric motors are integrated in the main landing gears to enable electric drive of the aircraft during the taxiing process. To achieve the same performance, a system level analysis is conducted to investigate the drive cycle requirements. Based on the recorded aircraft taxiing data, a variety of taxiing drive cycles are used as inputs to size the powertrain components. An axial flux permanent magnet (AFPM) machine is then proposed in order to meet the compact space and high torque output requirement. Both analytical calculations and three-dimensional finite element model are applied to design and improve the machine performance. A wide range of simulations has been conducted and the results confirmed that the proposed AFPM machine fulfils the given requirements for an electric taxiing drive system.

References

    1. 1)
      • B. Bilgin , P. Magne , P. Malysz .
        1. Bilgin, B., Magne, P., Malysz, P., et al: ‘Making the case for electrified transportation’, IEEE Trans. Transp. Electrification, 2015, 1, (1), pp. 417.
        . IEEE Trans. Transp. Electrification , 1 , 4 - 17
    2. 2)
      • Y. Yang , K. Arshad-Ali , J. Roeleveld .
        2. Yang, Y., Arshad-Ali, K., Roeleveld, J., et al: ‘State-of-the-art electrified powertrains -hybrid, plug-in, and electric vehicles’, Int. J. Powertrains, 2016, 5, (1), pp. 129.
        . Int. J. Powertrains , 1 , 1 - 29
    3. 3)
      • B. Sarlioglu , C.T. Morris .
        3. Sarlioglu, B., Morris, C.T.: ‘More electric aircraft – review, challenges and opportunities for commercial transport aircraft’, IEEE Trans. Transp. Electrification, 2015, 1, (1), pp. 5464.
        . IEEE Trans. Transp. Electrification , 1 , 54 - 64
    4. 4)
      • 4. International Civil Aviation Organization: ‘ICAO Environment Report 2010’. Environmental Branch of the International Civil Aviation Organization (ICAO), 2010.
        .
    5. 5)
      • X. Roboam , B. Sareni , A. Andrade .
        5. Roboam, X., Sareni, B., Andrade, A.: ‘More electricity in the air: toward optimized electrical networks embedded in more-electrical aircraft’, IEEE Ind. Electron. Mag., 2012, 6, (4), pp. 617.
        . IEEE Ind. Electron. Mag. , 4 , 6 - 17
    6. 6)
      • P. Wheeler .
        6. Wheeler, P.: ‘Technology for the more and all electric aircraft of the future’. IEEE Int. Conf. Automatica (ICA-ACCA), Curico, Chile, 2016.
        . IEEE Int. Conf. Automatica (ICA-ACCA)
    7. 7)
      • A. Tenconi , P.W. Wheeler .
        7. Tenconi, A., Wheeler, P.W.: ‘Introduction to the special section on the more electric aircraft: power electronics, machines, and drives’, IEEE Trans. Ind. Electron., 2012, 59, (9), pp. 35213522.
        . IEEE Trans. Ind. Electron. , 9 , 3521 - 3522
    8. 8)
      • W. Cao , B.C. Mecrov , G.J. Atkinson .
        8. Cao, W., Mecrov, B.C., Atkinson, G.J., et al: ‘Overview of electric motor technologies used for more electric aircraft (MEA)’, IEEE Trans. Ind. Electron., 2012, 59, (9), pp. 35233531.
        . IEEE Trans. Ind. Electron. , 9 , 3523 - 3531
    9. 9)
      • J. Tao , J. Guo , C. Liu .
        9. Tao, J., Guo, J., Liu, C.: ‘A review of powered wheel for aircraft’. IEEE Int. Conf. Aircraft Utility Systems (AUS), 2016.
        . IEEE Int. Conf. Aircraft Utility Systems (AUS)
    10. 10)
      • T. Raminosoa , T. Hamiti , M. Galea .
        10. Raminosoa, T., Hamiti, T., Galea, M., et al: ‘Feasibility and electromagnetic design of direct drive wheel actuator for green taxiing’. IEEE Energy Conversion Congress and Exposition, 2011.
        . IEEE Energy Conversion Congress and Exposition
    11. 11)
      • M. Heinrich , F. Kelch , P. Magne .
        11. Heinrich, M., Kelch, F., Magne, P., et al: ‘Regenerative braking capability analysis of an electric taxiing system for a single aisle midsize aircraft’, IEEE Trans. Transp. Electrification, 2015, 1, (3), pp. 298307.
        . IEEE Trans. Transp. Electrification , 3 , 298 - 307
    12. 12)
      • M. Heinrich , F. Kelch , P. Magne .
        12. Heinrich, M., Kelch, F., Magne, P., et al: ‘Investigation of regenerative braking on the energy consumption of an electric taxiing system for a single aisle midsize aircraft’. The 40th Annual Conf. of the IEEE Industrial Electron (IECON), Dallas, TX, 2014.
        . The 40th Annual Conf. of the IEEE Industrial Electron (IECON)
    13. 13)
      • F. Re .
        13. Re, F.: ‘Viability and state of the art of environmentally friendly aircraft taxiing systems’. Electrical Systems for Aircraft, Railway and Ship Propulsion (ESARS), 2012.
        . Electrical Systems for Aircraft, Railway and Ship Propulsion (ESARS)
    14. 14)
      • (2007)
        14. Delos Aerospace: ‘Delos Aerospace, L.L.C. announces technology to reduce aircraft fuel burn reducing greenhouse gas production and increase airport and aircraft capacity utilization’ (Delos Aerospace L.L.C., 2007). Available at http://delosaerospace.com/Press_Room.html.
        .
    15. 15)
      • 15. Honeywell Aerospace and Safran/ Messier-Bugatti-Dowty: ‘Electric green taxiing system (EGTS) homepage’ (Honeywell International Inc. and Safran S.A.), Available at http://www.greentaxiing.com.
        .
    16. 16)
      • F. Kelch .
        16. Kelch, F.: ‘Investigation of system requirements and design of an axial flux permanent magnet machine for an electric taxiing system for a commercial midsize aircraft’. Master Thesis, McMaster University, Hamilton, ON, Canada, 2015.
        .
    17. 17)
      • O. Grigore-Muler , M. Barbelian .
        17. Grigore-Muler, O., Barbelian, M.: ‘Regenerative braking for aircraft landing roll phase using an electric machine’. 13th Int. Conf. Optimization of Electrical and Electronic Equipment (OPTIM), Brasov, 2012.
        . 13th Int. Conf. Optimization of Electrical and Electronic Equipment (OPTIM)
    18. 18)
      • A.M. EL-Refaie .
        18. EL-Refaie, A.M.: ‘Fractional-slot concentrated-windings synchronous permanent magnet machines: opportunities and challenges’, IEEE Trans. Ind. Electron., 2009, 57, (1), pp. 107121.
        . IEEE Trans. Ind. Electron. , 1 , 107 - 121
    19. 19)
      • J. Wang , V.I. Patel , W. Wang .
        19. Wang, J., Patel, V.I., Wang, W.: ‘Fractional-slot permanent magnet brushless machines with low space harmonic contents’, IEEE Trans. Magn., 2013, 50, (1), pp. 14.
        . IEEE Trans. Magn. , 1 , 1 - 4
    20. 20)
      • E. Fornasiero , L. Alberti , N. Bianchi .
        20. Fornasiero, E., Alberti, L., Bianchi, N., et al: ‘Considerations on selecting fractional-slot nonoverlapped coil windings’, IEEE Trans. Ind. Appl., 2013, 49, (3), pp. 13161324.
        . IEEE Trans. Ind. Appl. , 3 , 1316 - 1324
    21. 21)
      • Z.Q. Zhu , M.L. Mohd Jamil , L.J. Wu .
        21. Zhu, Z.Q., Mohd Jamil, M.L., Wu, L.J.: ‘Influence of slot and pole number combinations on unbalanced magnetic force in PM machines with diametrically asymmetric windings’, IEEE Trans. Ind. Appl., 2013, 49, (1), pp. 1930.
        . IEEE Trans. Ind. Appl. , 1 , 19 - 30
    22. 22)
      • J.F. Gieras , R.-J. Wang , M.J. Kamper . (2008)
        22. Gieras, J.F., Wang, R.-J., Kamper, M.J.: ‘Axial flux permanent magnet brushless machines’ (Springer Science + Business Media B.V., 2008, 2nd edn.).
        .
    23. 23)
      • J. Cros , P. Viarouge , Y. Chalifour .
        23. Cros, J., Viarouge, P., Chalifour, Y., et al: ‘A new structure of universal motor using soft magnetic composites’, IEEE Trans. Ind. Appl., 2004, 40, (2), pp. 550557.
        . IEEE Trans. Ind. Appl. , 2 , 550 - 557
    24. 24)
      • F. Marignetti , G. Tomassi , P. Cancelliere .
        24. Marignetti, F., Tomassi, G., Cancelliere, P., et al: ‘Electromagnetic and mechanical design of a fractional-slot-windings axial-flux PM synchronous machine with soft magnetic compound stator’. Industry Applications Conf., 41st IAS Annual Meeting, 2006.
        . Industry Applications Conf., 41st IAS Annual Meeting
    25. 25)
      • W. Fei , P.C.K. Luk .
        25. Fei, W., Luk, P.C.K.: ‘An improved model for the back-EMF and cogging torque characteristics of a novel axial flux permanent magnet synchronous machine with a segmental laminated stator’, IEEE Trans. Magn., 2009, 45, (10), pp. 46094612.
        . IEEE Trans. Magn. , 10 , 4609 - 4612
    26. 26)
      • A.A. AbdElhafez , A.J. Forsyth .
        26. AbdElhafez, A.A., Forsyth, A.J.: ‘A review of more-electric aircraft’. 13th Int. Conf. Aerospace Sciences & Aviation Technology, Cairo, Egypt, 2009.
        . 13th Int. Conf. Aerospace Sciences & Aviation Technology
    27. 27)
      • T.J. Woolmer , M.D. McCulloch .
        27. Woolmer, T.J., McCulloch, M.D.: ‘Analysis of the yokeless and segmented armature machine’. IEEE Int. Electric Machines & Drives Conf., 2007, vol. 1, pp. 704708.
        . IEEE Int. Electric Machines & Drives Conf. , 704 - 708
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2017.0039
Loading

Related content

content/journals/10.1049/iet-est.2017.0039
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address