http://iet.metastore.ingenta.com
1887

Investigation and design of an axial flux permanent magnet machine for a commercial midsize aircraft electric taxiing system

Investigation and design of an axial flux permanent magnet machine for a commercial midsize aircraft electric taxiing system

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, an electric taxiing drive system for a commercial midsize aircraft is proposed. Four electric motors are integrated in the main landing gears to enable electric drive of the aircraft during the taxiing process. To achieve the same performance, a system level analysis is conducted to investigate the drive cycle requirements. Based on the recorded aircraft taxiing data, a variety of taxiing drive cycles are used as inputs to size the powertrain components. An axial flux permanent magnet (AFPM) machine is then proposed in order to meet the compact space and high torque output requirement. Both analytical calculations and three-dimensional finite element model are applied to design and improve the machine performance. A wide range of simulations has been conducted and the results confirmed that the proposed AFPM machine fulfils the given requirements for an electric taxiing drive system.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2017.0039
Loading

Related content

content/journals/10.1049/iet-est.2017.0039
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address