access icon free Hybridisation ratio for hybrid excitation synchronous motors in electric vehicles with enhanced performance

For electric vehicles (EVs) with severe acceleration requirement, the selected motor would be inevitably overdesigned to meet the acceleration requirement. To address this, the motor constant power speed ratio (CPSR) should be increased to remove part of the overdesign. There are different flux weakening techniques that are used to increase motor maximum speed (and increase the CPSR). Among them, hybrid excitation synchronous motor (HESM) advantages have been benefited in this study. CPSR depends on hybridisation ratio (HR) of the excitation system, and the motor inductance. The relation is analytically derived in this study. In addition to increasing CPSR, HR can control the place of motor high-efficient area over the efficiency map, which can increase EV total efficiency. A search algorithm has been developed, here, to find the optimal HR of a non-optimal HESM. The final design gives an efficient motor performance with less overdesign in drivetrain. Compared with the original permanent magnet synchronous motor, 4.1% improvement in total efficiency for an average city-highway driving cycle has been achieved, and 16% decrease in rated values of drivetrain elements is obtained.

Inspec keywords: synchronous motors; power transmission (mechanical); electric vehicles; machine control

Other keywords: severe acceleration requirement; drivetrain elements; flux weakening; constant power speed ratio; motor inductance; search algorithm; average city-highway driving cycle; nonoptimal hybrid excitation synchronous motors; CPSR; electric vehicles; hybridisation ratio

Subjects: Mechanical drives and transmissions; Transportation; Synchronous machines; Control of electric power systems

References

    1. 1)
      • 19. Kim, H.J., Kim, D.Y., Jeong, J.S., et al: ‘Proposition of structures for brushless hybrid-excitation synchronous motors with improved rotor’, IEEE Trans. Magn., 2016, 52, (9), pp. 115.
    2. 2)
      • 21. Hlioui, S., Amara, Y., Hoang, E., et al: ‘Overview of hybrid excitation synchronous machines technology’. Int. Conf. Electrical Engineering and Software Applications (ICEESA), 2013, no. 1, pp. 110.
    3. 3)
      • 8. Reddy, P.B., Jahns, T.M., El-Refaie, A.M.: ‘Impact of winding layer number and slot/pole combination on AC armature losses of synchronous surface PM machines designed for wide constant-power speed range operation’. IEEE Industry Applications Society Annual Meeting, 2008, pp. 18.
    4. 4)
      • 13. Mohammadi, A.S., Trovao, J.P.: ‘Electric motors evaluation algorithm based on their effect on electric vehicle mass reduction’. IEEE Vehicle Power and Propulsion Conf. (VPPC), 2016, pp. 16.
    5. 5)
      • 23. Mbayed, R., Salloum, G., Vido, L., et al: ‘Control of a hybrid excitation synchronous generator connected to a diode rectifier supplying a DC bus’, IET Electr. Power Appl., 2013, 7, (1), pp. 6876.
    6. 6)
      • 25. Mbayed, R., Salloum, G., Vido, L., et al: ‘Hybrid excitation synchronous motor control in electric vehicle with copper and iron losses minimization’. IECON Proc. (Industrial Electronics Conf.), 2012, pp. 48864891.
    7. 7)
      • 15. Trovao, J.P., Roux, M.-A., Menard, E., et al: ‘Energy- and power-split management of dual energy storage system for a three-wheel electric vehicle’, IEEE Trans. Veh. Technol., 2017, 66, (7), pp. 55405550.
    8. 8)
      • 22. Deng, Y.W.Z.: ‘Parallel hybrid excitation machines and their control schemes for DC generation system’, IET Electr. Power Appl., 2012, 6, (9), pp. 669680.
    9. 9)
      • 5. Walker, P.D., Rahman, S.A., Zhu, B., et al: ‘Modelling, simulations, and optimisation of electric vehicles for analysis of transmission ratio selection’, Adv. Mech. Eng., 2013, 5, pp. 113.
    10. 10)
      • 17. Lipo, T.A., Aydin, M.: ‘Field weakening of permanent magnet machines – design approaches’, University of Wisconsin-Madison, 2004.
    11. 11)
      • 20. Gao, Y., Qu, R., Li, D., et al: ‘A novel hybrid excitation flux reversal machine for electric vehicle propulsion’. IEEE Vehicle Power and Propulsion Conf. (VPPC), 2016, pp. 16.
    12. 12)
      • 12. Zhang, P., Ionel, D.M., Demerdash, N.A.O.: ‘Saliency ratio and power factor of IPM motors with distributed windings optimally designed for high efficiency and low-cost applications’, IEEE Trans. Ind. Appl., 2016, 52, (6), pp. 47304739.
    13. 13)
      • 4. Ehsani, M., Gao, Y., Emadi, A.: ‘Modern electric, hybrid electric, and fuel cell vehicles: fundamentals, theory, and design’ (CRC Press, 2015).
    14. 14)
      • 3. Eckert, J.J., Silva, L.C.A., Costa, E.S., et al: ‘Electric vehicle drivetrain optimisation’, IET Electric. Syst. Transport, 2017, 7, (1), pp. 3240.
    15. 15)
      • 1. National-level US Greenhouse Gas: ‘Fast Facts 1990–2014’, April 2016, pp. 24.
    16. 16)
      • 18. Mbayed, R., Salloum, G., Monmasson, E., et al: ‘Hybrid excitation synchronous machine finite simulation model based on experimental measurements’, IET Electr. Power Appl., 2016, 10, (4), pp. 304310.
    17. 17)
      • 24. Amara, Y., Hlioui, S., Belfkira, R., et al: ‘Comparison of open circuit flux control capability of a series double excitation machine and a parallel double excitation machine’, IEEE Trans. Veh. Technol., 2011, 60, (9), pp. 41944207.
    18. 18)
      • 27. Jahns, T.M.: ‘Component rating requirements for wide constant power operation of interior PM synchronous machine drives’. Conf. Record of the 2000 IEEE Industry Applications Conf. Thirty-Fifth IAS Annual Meeting and World Conf. on Industrial Applications of Electrical Energy (Cat. No.00CH37129), 2000, vol. 3, no. 1, pp. 16971704.
    19. 19)
      • 26. Borocci, G., Giulii Capponi, F., De Donato, G., et al: ‘Closed-loop, flux-weakening control of hybrid-excitation synchronous machine drives’, IEEE Trans. Ind. Appl., 2017, 53, (2), pp. 11161126.
    20. 20)
      • 9. Ehsani, M., Gao, Y., Gay, S.: ‘Characterization of electric motor drives for traction applications’. IECON Proc. (Industrial Electronics Conf.), 2003, vol. 1, pp. 891896.
    21. 21)
      • 7. Capponi, F.G., Borocci, G., Donato, G.D., et al: ‘Flux regulation strategies for hybrid excitation synchronous machines’, IEEE Trans. Ind. Appl., 2015, 51, (5), pp. 38383847.
    22. 22)
      • 2. Chan, C.C.: ‘The state of the art of electric, hybrid, and fuel cell vehicles’, Proc. IEEE, 2007, 95, (4), pp. 704718.
    23. 23)
      • 6. Patil, N.A., Lawler, J.S., McKeever, J.W.: ‘Determining constant power speed ratio of the induction motor from equivalent circuit parameters’. Conf. Proc. – IEEE SOUTHEASTCON, 2008, pp. 460467.
    24. 24)
      • 11. Xue, X.D., Cheng, K.W.E., Cheung, N.C.: ‘Selection of electric motor drives for electric vehicles’. Australasian Universities Power Eng. Conf. AUPEC ‘08, 2008, pp. 16.
    25. 25)
      • 10. Zeraoulia, M., Benbouzid, M.E.H., Diallo, D.: ‘Electric motor drive selection issues for HEV propulsion systems: a comparative study’, IEEE Trans. Veh. Technol., 2006, 55, (6), pp. 17561764.
    26. 26)
      • 16. Larminie, J., Lowry, J.: ‘Electric vehicle technology explained’, 2012.
    27. 27)
      • 14. Amara, Y., Vido, L., Gabsi, M., et al: ‘Hybrid excitation synchronous machines: energy efficient solution for vehicle propulsion’. IEEE Veh. Power Propulsion Conf., 2009, vol. 58, no. 5, pp. 16.
    28. 28)
      • 28. Sedrine, E.B., Ojeda, J., Gabsi, M., et al: ‘Fault-tolerant control using the GA optimization considering the reluctance torque of a five-phase flux switching machine’, IEEE Trans. Energy Convers., 2015, 30, (3), pp. 927938.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2017.0029
Loading

Related content

content/journals/10.1049/iet-est.2017.0029
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading