Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Modified voltage equaliser based on Cockcroft–Walton voltage multipliers for series-connected supercapacitors

It is essential for electric vehicle to equalise the voltages of battery or supercapacitor (SC) cells in series connection. Comparing with other equalisation methods based on energy transfer, Cockcroft–Walton (CW) voltage multiplier brings great benefits to the simplification of equalisation structure. Voltage equaliser formed by voltage multiplier can realise voltage balance automatically without voltage detection and control unit. However, the traditional (CW) voltage multiplier structure has two demerits. One is incapable of realising the voltage balancing for all the cells in series; the other one is the large inrush current of parallel capacitors that reduces the lifetime of the equaliser. To solve these problems, a modified voltage equalisation circuit is proposed. The new equaliser is constituted by a half-bridge frontend and a multiplier backend. The half-bridge generates the alternating voltage, and the multiplier accomplishes the voltage balancing. The operation principles, circuit analysis and parameters calculation are examined in detail. The performance is evaluated by simulation and experimental with three SCs in series. The accordance between simulation and experiment further proves that the voltage balancing is achieved for all the series cells and the inrush current of capacitors is declined at the turning on of power switches.

References

    1. 1)
      • 8. Lim, C.S., Lee, K.J., Ku, N.J., et al: ‘A modularized equalization method based on magnetizing energy for a series-connected lithium-ion battery string’, IEEE Trans. Power Electron., 2014, 29, (4), pp. 17911799.
    2. 2)
      • 22. Li, S., Mi, C.C., Zhang, M.: ‘A high efficiency active battery balancing circuit using multi-winding transformer’, IEEE Trans. Ind. Appl., 2013, 49, (1), pp. 198207.
    3. 3)
      • 23. Sano, K., Fujita, H.: ‘A resonant switched-capacitor converter for voltage balancing of series-connected capacitors’, IEEJ Trans. Ind. Appl., 2009, 129, (6), pp. 683688.
    4. 4)
      • 9. Kim, H.S., Park, K.B., Park, S.H., et al: ‘A new two-switch flyback battery equalizer with low voltage stress on the switches’, IEEE Energy Convers. Cong. Expo., 2009, pp. 511516.
    5. 5)
      • 13. Shang, Y., Zhang, C., Cui, N.: ‘A cell-to-cell battery equalizer with zero-current switching and zero-voltage gap on quasi-resonant LC converter and boost converter’, IEEE Trans. Power Electron., 2015, 30, (7), pp. 37313747.
    6. 6)
      • 17. Park, S.H., Park, K.B., Kim, H.S., et al: ‘Single-magnetic cell-to-cell charge equalization converter with reduced number of transformer windings’, IEEE Trans. Power Electron., 2012, 27, (6), pp. 29002911.
    7. 7)
      • 7. Hua, C.C., Fang, Y.H., Li, P.H.: ‘Charge equalisation for series-connected LiFePO4 battery strings’, IET Power Electron., 2015, 8, (6), pp. 10171025.
    8. 8)
      • 11. Kim, C.H., Kim, M.Y., Kim, Y.D., et al: ‘A modularized charge equalizer using a battery monitoring IC for series-connected Li-ion battery strings in electric vehicles’, IEEE Trans. Power Electron., 2013, 28, (8), pp. 37793787.
    9. 9)
      • 32. Seeman, M.D., Sanders, S.R.: ‘Analysis and optimization of switched-capacitor DC-DC converters’. IEEE Workshops on Computers in Power Electronics, 2006, pp. 216224.
    10. 10)
      • 16. Evzelman, M., Ur Rehman, M., Hathaway, K., et al: ‘Active balancing system for electric vehicles with incorporated low voltage bus’, IEEE Trans. Power Electron., 2014, pp. 32303236.
    11. 11)
      • 10. Hsieh, Y.-C., Cai, Z.-X., Wu, W.-Z.: ‘Switched-capacitor charge equalization circuit for series-connected batteries’. Int. Power Electron. Conf., 2014, pp. 429432.
    12. 12)
      • 24. Baughma, A.C., Ferdowsi, M.: ‘Double-tiered switched-capacitor battery charge equalization technique’, IEEE Trans. Ind. Electron., 2008, 55, (6), pp. 22772285.
    13. 13)
      • 1. Cao, J., Emadi, A.: ‘A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles’, IEEE Trans. Power Electron., 2009, 27, (1), pp. 122132.
    14. 14)
      • 26. Yuanmao, Y., Cheng, K.W.E., Yeung, Y.P.B.: ‘Zero-current switching switched-capacitor zero-voltage-gap automatic equalization system for series battery string’, IEEE Trans. Ind. Appl., 2012, 27, (7), pp. 32343242.
    15. 15)
      • 4. Bowkett, M., Thanapalan, K., Stockley, T., et al: ‘Design and implementation of an optimal battery management system for hybrid electric vehicles’. Int. Conf. on Automation & Computing, Brunel University, London, UK, September 2013.
    16. 16)
      • 2. Jia, J., Wang, G., Cham, Y.T., et al: ‘Electrical characteristic study of a hybrid PEMFC and ultracapacitor system’, IEEE Trans. Ind. Electron., 2010, 57, (6), pp. 19451953.
    17. 17)
      • 6. Cao, J., Schofield, N., Emadi, A.: ‘Battery balancing methods: a comprehensive review’. IEEE Vehicle Power & Propulsion Conf., 2008, pp. 16.
    18. 18)
      • 27. Uno, M., Tanaka, K.: ‘Single- switch multioutput charger using voltage multiplier for series-connected lithium-ion battery/supercapacitor equalization’, IEEE Trans. Ind. Electron., 2013, 60, (8), pp. 32273239.
    19. 19)
      • 5. Haq, I.N., Leksono, E., Iqbal, M., et al: ‘Development of battery management system for cell monitoring and protection’. IEEE, International Conf. on Electrical Engineering and Computer Science, Bali, Indonesia, November 2014.
    20. 20)
      • 19. Xu, A., Xie, S., Liu, X.: ‘Dynamic voltage equalization for series-connected ultracapacitors in EV/HEV applications’, IEEE Trans. Veh. Technol., 2009, 58, (8), pp. 39813987.
    21. 21)
      • 15. Phung, T.H., Collet, A., Crebier, J.C.: ‘An optimized topology for next-to-next balancing of series-connected lithium-ion cells’, IEEE Trans. Power Electron., 2014, 29, (9), pp. 46034612.
    22. 22)
      • 3. Rahimi-Eichi, H., Ojha, U., Baronti, F., et al: ‘Battery management system: an overview of its application in the smart grid and electric vehicles’, IEEE Ind. Electron. Mag., 2013, 7, (2), pp. 416.
    23. 23)
      • 12. Lee, Y.S., Cheng, G.T.: ‘Quasi-resonant zero-current-switching bidirectional converter for battery equalization applications’, IEEE Trans. Power Electron., 2006, 21, (5), pp. 12131224.
    24. 24)
      • 30. Uno, M., Kukita, A.: ‘Double-switch equalizer using parallel- or series-parallel-resonant inverter and voltage multiplier for series-connected supercapacitors’, IEEE Trans. Ind. Appl., 2014, 29, (2), pp. 812828.
    25. 25)
      • 14. Imtiaz, A.M., Khan, F.H.: ‘Time shared flyback converter’ based regenerative cell balancing technique for series connected li-ion battery strings’, IEEE Trans. Power Electron., 2013, 28, (12), pp. 59605975.
    26. 26)
      • 18. Anno, T., Koizumi, H.: ‘Double-input bidirectional dc/dc converter using cell-voltage equalizer with flyback transformer’, IEEE Trans. Power Electron., 2015, 30, (6), pp. 29232934.
    27. 27)
      • 25. Kim, M.Y., Kim, C.H., Kim, J.H., et al: ‘A chain structure of switched capacitor for improved cell balancing speed of lithium-ion batteries’, IEEE Trans. Ind. Electron., 2014, 61, (8), pp. 39893999.
    28. 28)
      • 29. Uno, M., Tanaka, K.: ‘Double-switch single-transformer cell voltage equalizer using a half-bridge inverter and voltage multiplier for series-connected supercapacitors’, IEEE Trans. Veh. Technol., 2012, 61, (9), pp. 39203930.
    29. 29)
      • 28. Rosas-Caro, J.C., Ramirez, J.M., Garcia-Vite, P.M.: ‘A DC-DC multilevel boost converter’, IET Power Electron., 2008, 3, (1), pp. 21462151.
    30. 30)
      • 31. Yuanmao, Y., Cheng, K.W.E., Fong, Y.C., et al: ‘Topology, modeling and design of switched-capacitor-based cell balancing systems and their balancing exploration’, IEEE Trans. Power Electron., 2016, pp. 11.
    31. 31)
      • 21. Hsieh, Y.H., Liang, T.J., Chen, S.M.O., et al: ‘A novel high-efficiency compact-size low-cost balancing method for series-connected battery applications’, IEEE Trans. Power Electron., 2013, 28, (12), pp. 59275939.
    32. 32)
      • 20. Chen, Y., Liu, X., Cui, Y., et al: ‘A multi-winding transformer cell-to-cell active equalization method for lithium-ion batteries with reduced number of driving circuits’, IEEE Trans. Power Electron., 2016, 31, (7), pp. 49164929.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2017.0016
Loading

Related content

content/journals/10.1049/iet-est.2017.0016
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address