access icon free Online condition monitoring and fault detection of large supercapacitor banks in electric vehicle applications

Supercapacitor is being widely used in electric transportation applications, particularly in electric vehicles (EVs). In the EV, the supercapacitor mainly serves as energy storage system for accelerating the vehicle and/or capturing the braking energy due to its prominent features such as high power density and long life cycle. However, during the vehicle braking and/or accelerating, deep and fast supercapacitor charging-discharging cycles increase the electric and thermal stresses on the supercapacitor bank. Under such circumstances, condition monitoring of the supercapacitor bank is essential in EVs for safe operation of the storage system. In this paper, an effective method for condition monitoring and fault diagnosis of the supercapacitor banks is proposed. First, it is shown that the equivalent series resistance (ESR) and double-layer capacitance (CDL) can be used as the key signatures for indicating the state-of-health. Subsequently, the recursive extended least-square algorithm (RELS) is used for online estimation of the ESR and capacitance of the supercapacitor bank. Based on a residual signal which is defined as the difference between the voltages of the supercapacitor bank and RELS algorithm, the abnormal conditions of the supercapacitor bank are distinguished. Experimental results are presented to confirm the feasibility and precision of the proposed method.

Inspec keywords: thermal stresses; fault diagnosis; supercapacitors; electric vehicle charging; braking; condition monitoring

Other keywords: EV; double-layer capacitance; thermal stress; electric transportation applications; online condition monitoring and fault detection; electric stress; supercapacitor state-of-health; braking energy capturing; equivalent series resistance; RELS algorithm; electric vehicle applications; large supercapacitor banks; vehicle accelerating; recursive extended least-square algorithm; supercapacitor charging-discharging cycles; energy storage system; vehicle braking

Subjects: Storage in electrical energy; General transportation (energy utilisation); Other energy storage; Transportation

References

    1. 1)
      • 31. Shili, S., Hijazi, A., Sari, A., et al: ‘Balancing circuit new control for supercapacitor storage system lifetime maximization’, IEEE Trans. Power Electron., 2017, 32, (6), pp. 49394948.
    2. 2)
      • 25. German, R., Hammar, A., Lallemand, R., et al: ‘Novel experimental identification method for a supercapacitor multipore model in order to monitor the state of health’, IEEE Trans. Power Electron., 2016, 31, (1), pp. 548559.
    3. 3)
      • 23. Buller, S., Karden, E., Kok, D., et al: ‘Modeling the dynamic behavior of supercapacitors using impedance spectroscopy’. IEEE Industry Applications Conf., 2001, pp. 25002504.
    4. 4)
      • 5. Kovaltchouk, T., Multon, B., Ahmed, H.B., et al: ‘Enhanced aging model for supercapacitors taking into account power cycling: application to the sizing of an energy storage system in a direct wave energy converter’, IEEE Trans. Ind. Appl., 2015, 51, (3), pp. 24052414.
    5. 5)
      • 16. IEC62391: ‘Fixed electric double layer capacitors for use in electronic equipment’, 2006.
    6. 6)
      • 1. Yu, A., Chabot, V., Zhang, J.: ‘Electrochemical supercapacitors for energy storage and delivery: fundamentals and applications’ (CRC Press, 2013), pp. 3852.
    7. 7)
      • 24. Taberna, P.L., Simon, P., Fauvarque, J.F.: ‘Electrochemical characteristics and impedance spectroscopy studies of carbon–carbon supercapacitors’, J. Electrochem. Soc., 2003, 150, (3), pp. 292300.
    8. 8)
      • 6. Hijazi, A., Bideaux, E., Venet, P., et al: ‘Electro-thermal sizing of supercapacitor stack for an electrical bus: bond graph approach’. IEEE Int. Conf. Ecological Vehicles and Renewable Energies, 2015, pp. 18.
    9. 9)
      • 10. Naseri, F., Farjah, E., Ghanbari, T.: ‘An efficient regenerative braking system based on battery/supercapacitor for electric, hybrid and plug-in hybrid electric vehicles with BLDC motor’, IEEE Trans. Veh. Technol., 2017, 66, (5), pp. 37243738.
    10. 10)
      • 13. Lukic, S.M., Cao, J., Bansal, R.C., et al: ‘Energy storage systems for automotive applications’, IEEE Trans. Ind. Electron., 2008, 55, (6), pp. 22582267.
    11. 11)
      • 18. Bouchard, M., Quednau, S.: ‘Multichannel recursive-least-square algorithms and fast-transversal-filter algorithms for active noise control and sound reproduction systems’, IEEE Trans. Speech Audio Process., 2000, 8, (5), pp. 606618.
    12. 12)
      • 28. Reichbach, N., Kuperman, A.: ‘Recursive-least-squares-based real-time estimation of supercapacitor parameters’, IEEE Trans. Energy Convers., 2016, 31, (2), pp. 810812.
    13. 13)
      • 15. Soualhi, A., Sari, A., Razik, H., et al: ‘Supercapacitors ageing prediction by neural networks’. IEEE Industrial Electronics Society Conf., 2013, pp. 68126818.
    14. 14)
      • 7. Hammar, A., Venet, P., Lallemand, R., et al: ‘Study of accelerated aging of supercapacitors for transport applications’, IEEE Trans. Ind. Electron., 2010, 57, (12), pp. 39723979.
    15. 15)
      • 32. Kreczanik, P., Kovaltchouk, T., Hijazi, A., et al: ‘Consideration of the ageing in the control of the balancing circuit of supercapacitor’. European Symp. Supercapacitors & Applications, 2010, pp. 1038.
    16. 16)
      • 9. Cao, J., Emadi, A.: ‘A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles’, IEEE Trans. Power Electron., 2012, 27, (1), pp. 122132.
    17. 17)
      • 22. Eddahech, A., Ayadi, M., Briat, O., et al: ‘Online parameter identification for real-time supercapacitor performance estimation in automotive applications’, Int. J. Electr. Power Energy Syst., 2013, 51, pp. 162167.
    18. 18)
      • 21. Liu, W., Park, I., Wang, Y., et al: ‘Extended kernel recursive least squares algorithm’, IEEE Trans. Signal Process., 2009, 57, (10), pp. 38013814.
    19. 19)
      • 14. Mejdoubi, A.E., Oukaour, A., Chaoui, H., et al: ‘Online supercapacitor diagnosis for electric vehicle applications’, IEEE Trans. Veh. Technol., 2016, 65, (6), pp. 42414252.
    20. 20)
      • 19. Musolino, V., Piegari, L., Tironi, E.: ‘New full-frequency-range supercapacitor model with easy identification procedure’, IEEE Trans. Ind. Electron., 2013, 60, (1), pp. 112120.
    21. 21)
      • 33. Mutoh, N., Mikiharu, N., Masaki, K., et al: ‘EMI noise control methods suitable for electric vehicle drive systems’, IEEE Trans. Electromagn. Compat., 2005, 47, (4), pp. 930937.
    22. 22)
      • 17. Kreczanik, P., Martin, C., Venet, P., et al: ‘Constant power cycling for accelerated ageing of supercapacitors’. IEEE European Conf. Power Electronics and Applications, 2009, pp. 110.
    23. 23)
      • 4. Hijazi, A., Kreczanik, P., Bideaux, E., et al: ‘Thermal network model of supercapacitors stack’, IEEE Trans. Ind. Electron., 2012, 59, (2), pp. 979987.
    24. 24)
      • 8. Hijazi, A., Bideaux, E., Venet, P., et al: ‘Sizing of supercapacitors stack: application to the braking energy recovery of electrical bus’. European Symp. on Supercapacitors & Applications, 2010, pp. 1037.
    25. 25)
      • 3. Emadi, A.: ‘Advanced electric drive vehicles’ (CRC Press, 2014), pp. 254258.
    26. 26)
      • 29. Shili, S., Hijazi, A., Sari, A., et al: ‘Online supercapacitor health monitoring using a balancing circuit’, J. Energy Storage, 2016, 7, pp. 159166.
    27. 27)
      • 30. Shili, S., Hijazi, A., Venet, P., et al: ‘Balancing circuit control for supercapacitor state estimation’. IEEE Int. Conf. Ecological Vehicles and Renewable Energies, 2015, pp. 17.
    28. 28)
      • 27. Oukaour, A., Pouliquen, M., Tala-Ighil, B., et al: ‘Supercapacitors aging diagnosis using least square algorithm’, Microelectron. Reliab., 2013, 53, (9), pp. 16381642.
    29. 29)
      • 11. Castaings, A., Lhomme, W., Trigui, R., et al: ‘Practical control schemes of a battery/supercapacitor system for electric vehicle’, IET Electr. Syst. Transp., 2015, 6, (1), pp. 2026.
    30. 30)
      • 12. Allègre, A.L., Bouscayrol, A., Trigui, R.: ‘Flexible real-time control of a hybrid energy storage system for electric vehicles’, IET Electr. Syst. Transp., 2013, 3, (3), pp. 7985.
    31. 31)
      • 20. Bertrand, N., Sabatier, J., Briat, O., et al: ‘Embedded fractional nonlinear supercapacitor model and its parametric estimation method’, IEEE Trans. Ind. Electron., 2010, 57, (12), pp. 39914000.
    32. 32)
      • 26. Kreczanik, P., Venet, P., Hijazi, A., et al: ‘Study of supercapacitor aging and lifetime estimation according to voltage, temperature, and RMS current’, IEEE Trans. Ind. Electron., 2014, 61, (9), pp. 48954902.
    33. 33)
      • 2. Conway, B.E.: ‘Electrochemical supercapacitors: scientific fundamentals and technological applications’ (Springer Science & Business Media, 2013), pp. 105121.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2017.0013
Loading

Related content

content/journals/10.1049/iet-est.2017.0013
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading