access icon free EVs for frequency regulation: cost benefit analysis in a smart grid environment

Vehicle-to-grid systems facilitate efficient and reliable integration of electric vehicle (EV) into the smart grid. This integration helps provide various services such as peak load levelling, frequency regulation (FR) and other ancillary services that provide notable benefits to utilities. In addition to the benefits to the utilities, EV owners may also benefit from providing these ancillary services to the grid. In this study, a comprehensive assessment of the economic benefits of using EVs to support FR service to the power grid is developed. The limitations for providing such services to the grid are evaluated. The number of the charge and discharge cycles of the EV battery is estimated based on a realistic semi-logarithmic model. Finally, the estimates are used to calculate the battery degradation cost for providing FR and estimate the safe amount of power that EVs can supply with adequate consideration for daily driving requirements.

Inspec keywords: cost-benefit analysis; smart power grids; electric vehicles

Other keywords: discharge cycles; EV battery; economic benefits; battery degradation cost; FR service; cost benefit analysis; EV; realistic semilogarithmic model; smart grid environment; frequency regulation

Subjects: Transportation

References

    1. 1)
      • 23. Vetter, J., Novák, P., Wagner, M., et al: ‘Ageing mechanisms in lithium-ion batteries’, J. Power Sources, 2005, 147, (1), pp. 269281.
    2. 2)
      • 7. Stüdli, S., Griggs, W., Crisostomi, E., et al: ‘On optimality criteria for reverse charging of electric vehicles’, IEEE Trans. Intell. Transp. Syst., 2014, 15, (1), pp. 451456.
    3. 3)
      • 27. DeBord, M.: ‘Elon Musk's big announcement: it's called ‘tesla energy’, Bussiness Insider, 2015. Available at http://www.businessinsider.com/here-comes-teslas-missing-piece-battery-announcement-2015-4.
    4. 4)
      • 11. Raustad, R.A.: ‘The role of V2G in the smart grid of the future’, Electrochem. Soc. Interface, 2015, 1, (24), pp. 5356.
    5. 5)
      • 20. Tomić, J., Kempton, W.: ‘Using fleets of electric-drive vehicles for grid support’, J. Power Sources, 2007, 168, (2), pp. 459468.
    6. 6)
      • 14. Farzin, H., Fotuhi-Firuzabad, M., Moeini-Aghtaie, M.: ‘A practical scheme to involve degradation cost of lithium-ion batteries in vehicle-to-grid applications’, IEEE Trans. Sustain. Energy, 2016, 7, (4), pp. 17301738.
    7. 7)
      • 1. NERC: ‘Standard BAL-003-1-frequency response and frequency bias setting’, 2008.
    8. 8)
      • 18. Sortomme, E., El-Sharkawi, M.: ‘Optimal scheduling of vehicle-to-grid energy and ancillary services’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 351359.
    9. 9)
      • 21. Miller, J., Brost, R.: ‘Future electrical requirements for fuel economy enhanced passenger vehicles’. The Proc. of the First Annual Advanced Automotive Battery Conf., 2001.
    10. 10)
      • 9. Su, W., Eichi, H., Zeng, W., et al: ‘A survey on the electrification of transportation in a smart grid environment’, IEEE Trans. Ind. Inf., 2012, 8, (1), pp. 110.
    11. 11)
      • 5. Tan, J, Wang, L.: ‘Integration of plug-in hybrid electric vehicles into residential distribution grid based on two-layer intelligent optimization’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 17741784.
    12. 12)
      • 41. Pantos, M.: ‘Exploitation of electric-drive vehicles in electricity markets’, IEEE Trans. Power Syst., 2012, 27, (2), pp. 682694.
    13. 13)
      • 32. Tashakor, N., Farjah, E., Ghanbari, T.: ‘A bidirectional battery charger with modular integrated charge equalization circuit’, IEEE Trans. Power Electron., 2017, 32, (3), pp. 21332145.
    14. 14)
      • 38. Ghofrani, M., Arabali, A., Etezadi-Amoli, M., et al: ‘Smart scheduling and cost-benefit analysis of grid-enabled electric vehicles for wind power integration’, IEEE Trans. Smart Grid, 2014, 5, (5), pp. 23062313.
    15. 15)
      • 3. The Regulatory Assistance Project and the International Council on Clean Transportation: ‘Challenges and choices for electricity and transportation policy’, 2013.
    16. 16)
      • 10. Wang, M.: ‘Electric vehicles: A cost and benefit analysis for utilities engaging the industry’. Technical Report, Sustainable Capital Advisors, 2015. Available at http://www.sustainablecap.com/featured-news/fact-sheet-administration-announces-68-cities-states-and-businesses-are-working-together-to-increase-access-to-solar-for-all-americans/.
    17. 17)
      • 43. Perez, R.: ‘Off-grid inverter efficiency’, Home Power Mag., 2006, 113, pp. 3637.
    18. 18)
      • 24. Shahan, S.: ‘BMW+Samsung Batteries vs Tesla+Panasonic Batteries — Which Are better?, 2016. Available at https://cleantechnica.com/2016/07/16/bmwsamsung-batteries-vs-teslapanasonic-batteries-better/ (accessed December 2016).
    19. 19)
      • 42. Ghofrani, M., Arabali, A., Ghayekhloo, M.: ‘Optimal charging/discharging of grid-enabled electric vehicles for predictability enhancement of PV generation’, Electr. Power Syst. Res., 2014, 31, (117), pp. 134142.
    20. 20)
      • 39. The Danish National Travel Survey (TU). Available at http://www.modelcenter.transport.dtu.dk/english/TU.
    21. 21)
      • 35. MIT Electric Vehicle Team: ‘A guide to understanding battery specifications’. Technical Report, 2008.
    22. 22)
      • 15. Han, S., Han, S., Sezaki, K.: ‘Estimation of achievable power capacity from plug-in electric vehicles for V2G frequency regulation: case studies for market participation’, IEEE Trans. Smart Grid, 2011, 2, (4), pp. 632641.
    23. 23)
      • 28. Tan, K.M., Ramachandaramurthy, V.K., Yong, J.Y.: ‘Bidirectional battery charger for electric vehicle’. The 2014 IEEE Innovative Smart Grid Technologies – Asia conference (ISGT ASIA), 2014, pp. 406411.
    24. 24)
      • 17. Peterson, S., Whitacre, J., Apt, J.: ‘The economics of using plug-in hybrid electric vehicle battery packs for grid storage’, J. Power Sources, 2010, 195, (8), pp. 23772384.
    25. 25)
      • 36. Saft: ‘Evolion Li-ion battery’, 2013. Available at www.saftbatteries.com/.../Evolion_Product_Brochure_en_1213_BD_protected_0.pdf, (accessed December 2016).
    26. 26)
      • 29. Yong, J.Y., Ramachandaramurthy, V.K., Tan, K.M., et al: ‘Bi-directional electric vehicle fast charging station with novel reactive power compensation for voltage regulation’, Int. J. Electr. Power Energy Syst., 2015, 64, pp. 300310.
    27. 27)
      • 16. Zou, N., Qian, L., Li, H.: ‘Auxiliary frequency and voltage regulation in microgrid via intelligent electric vehicle charging’. The Proc. of the IEEE Int. Conf. on Smart Grid Communications (SmartGridComm), 2014, pp. 662667.
    28. 28)
      • 2. NERC Resources Subcommittee: ‘Balancing and frequency control’, 2011.
    29. 29)
      • 26. Edelstein, S.: ‘Green car report’, 2014. Available at http://www.greencarreports.com/news/1095193_nissan-leaf-to-home-electric-car-power-tests-more-practical-for-u-s-with-longer-range-cars.
    30. 30)
      • 19. Kempton, W., , Tomić, J.: ‘Vehicle-to-grid power fundamentals: calculating capacity and net revenue’, J. Power Sources, 2005, 144, (1), pp. 268279.
    31. 31)
      • 22. Han, S., Han, S., Sezak, K.: ‘Economic assessment on V2G frequency regulation regarding the battery degradation’. The Proc. of the 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), 2012, pp. 16.
    32. 32)
      • 13. Luo, Z., Hu, Z., Song, Y., et al: ‘Economic analyses of plug-in electric vehicle battery providing ancillary services’. The Proc. of the 2012 IEEE Int. Electric Vehicle Conf., 2012, pp. 15.
    33. 33)
      • 6. Farzin, H., Moeini-Aghtaie, M., Fotuhi-Firuzabad, M.: ‘Reliability studies of distribution systems integrated with electric vehicles under battery-exchange mode’, IEEE Trans. Power Deliv., 2016, 31, (6), pp. 24732482.
    34. 34)
      • 40. Natural Resources Canada, Office of Energy Efficiency: ‘Canadian Vehicle Survey’, 2009.
    35. 35)
      • 25. Ma, T., Mohammed, O.: ‘Real-time plug-in electric vehicles charging control for V2G frequency regulation’. The Proc. of the 39th Annual Conf. of the IEEE Industrial Electronics Society, IECON, 2013, pp. 11971202.
    36. 36)
      • 30. Izumi, T., Hirota, M., Hatanaka, K., et al: ‘Bidirectional charging unit for vehicle to-X (V2X) power flow’, Sei Technical Review, No. 79, 2014.
    37. 37)
      • 31. Wang, X., Jiang, C., Lei, B., et al: ‘Power-loss analysis and efficiency maximization of a silicon-carbide MOSFET-based three-phase 10-kW bidirectional EV charger using variable-DC-bus control’, IEEE J. Emerging Sel. Top. Power Electron., 2016, 4, (3), pp. 880892.
    38. 38)
      • 34. Uddin, K., Perera, S., Widanage, D., et al: ‘Characterising lithium-ion battery degradation through the identification and tracking of electrochemical battery model parameters’, Batteries J., 2016, 2, (20), pp. 1321.
    39. 39)
      • 8. Xu, N.Z., Chung, C.Y.: ‘Reliability evaluation of distribution systems including vehicle-to-home and vehicle-to-grid’, IEEE Trans. Power Syst., 2016, 31, (1), pp. 759768.
    40. 40)
      • 33. Ingram, A.: ‘Why lithium-ion batteries degrade with repeated charging’,  2014. Available at http://www.greencarreports.com/news/1092854_why-lithium-ion-batteries-degrade-with-repeated-charging, (accessed December 2016).
    41. 41)
      • 4. Wang, Z., Wang, S.: ‘Grid power peak shaving and valley filling using vehicle-to-grid systems’, IEEE Trans. Power Deliv., 2013, 28, (3), pp. 18221829.
    42. 42)
      • 44. Newell, S., Oates, D., Pfeifenberger, J.: ‘PJM capacity auction results and market fundamentals’. Technical Report, The Brattle Group, Cambridge, MA, 2015.
    43. 43)
      • 12. Ribberink, H., Darcovich, K., Pincet, F.: ‘Battery life impact of vehicle-to-grid application of electric vehicles’. The Proc. of the Int. Electric Vehicle Symp and Exhibition, 2015.
    44. 44)
      • 37. Thaller, L.: ‘Expected cycle life vs. depth of discharge relationships of well-behaved single cells and cell strings’, J. Electrochem. Soc., 1983, 130, (5), pp. 986990.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2017.0007
Loading

Related content

content/journals/10.1049/iet-est.2017.0007
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading