access icon free Non-linear time-delay controller for dc/dc power converters in application of electric vehicles

dc/dc Power converters are increasingly used in vehicular power systems with their control systems re-designed to overcome the challenges associated with the wide voltage and load variations and the non-linear behaviour of constant power loads (CPLs). Within this context, this study investigates the implementation of a non-linear time-delay control (TDC) system in dc/dc power converters. This non-linear controller compares the system response with the response of a reference model, and then generates a control signal which forces the system to follow the reference model. The TDC system is designed to tightly regulate the output voltage of a conventional dc/dc boost converter under input voltage and load variations. Furthermore, the stability of the TD controller following to the CPL variations is studied. To verify the effectiveness of TD controller, its performance is compared with an integral-double-lead controller using MATLAB software.

Inspec keywords: electric vehicles; delays; nonlinear control systems; DC-DC power convertors

Other keywords: nonlinear time-delay controller; input voltage variations; MATLAB software; TDC system; conventional dc-dc boost converter; integral-double-lead controller; control systems; CPL variations; dc-dc power converters; vehicular power systems; reference model; control signal; voltage variations; load variations; electric vehicles; nonlinear behaviour; system response

Subjects: Transportation; Transportation system control; Distributed parameter control systems; Nonlinear control systems; Control of electric power systems; DC-DC power convertors

References

    1. 1)
      • 23. Rahimi, A.M., Emadi, A.: ‘Active damping in dc/dc power electronic converters: a novel method to overcome the problems of constant power loads’, IEEE Trans. Ind. Electron., 2009, 56, pp. 14281439, doi: 10.1109/TIE.2009.2013748.
    2. 2)
      • 11. Wai, R.-J., Shih, L.-C.: ‘Design of voltage tracking control for DC–DC boost converter via total sliding-mode technique’, IEEE Trans. Ind. Electron., 2011, 58, (6), pp. 25022511, doi: 10.1109/TIE.2010.2066539.
    3. 3)
      • 2. Emadi, A., Williamson, S.S., Khaligh, A.: ‘Power electronics intensive solutions for advanced electric, hybrid electric, and fuel cell vehicular power systems’, IEEE Trans. Power Electron., 2006, 21, pp. 567577, doi: 10.1109/TPEL.2006.872378.
    4. 4)
      • 17. Jung, K.H., Chang, P.H., Stefanov, D.: ‘Discretisation method and stability criteria for non-linear systems under discrete-time time delay control’, IET Control Theory Appl., 2011, 5, pp. 12641276, doi: 10.1049/iet-cta.2010.0181.
    5. 5)
      • 24. Erickson, R.W., Maksimovic, D.: ‘Fundamentals of power electronics’ (Springer, 2012), ch. 7.
    6. 6)
      • 18. Chang, P.H., Lee, J.W.: ‘An observer design for time-delay control and its application to DC servo motor’, Control Eng. Pract., 1994, 2, (2), pp. 263270.
    7. 7)
      • 21. Roy, S., Kar, I.N., Lee, J., et al: ‘Adaptive robust time-delay control for a class of uncertain Euler–Lagrange systems’, IEEE Trans. Ind. Electron., 2017, doi: 10.1109/TIE.2017.2688959.
    8. 8)
      • 1. Emadi, A., Lee, Y.J., Rajashekara, K.: ‘Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles’, IEEE Trans. Ind. Electron., 2008, 55, pp. 22372245, doi: 10.1109/TIE.2008.922768.
    9. 9)
      • 14. Youcef-Toumi, K., Ito, O.: ‘Controller design for systems with unknown nonlinear dynamics’. Proc. IEEE American Control Conf., June 1987.
    10. 10)
      • 12. Martinez-Salamero, L., Garcia, G., Orellana, M., et al: ‘Start-up control and voltage regulation in a boost converter under sliding-mode operation’, IEEE Trans. Ind. Electron., 2013, 60, (10), pp. 46374649, doi: 10.1109/TIE.2012.2210375.
    11. 11)
      • 6. Alonge, F., D'Ippolito, F., Cangemi, T.: ‘Identification and robust control of DC/DC converter Hammerstein model’, IEEE Trans. Power Electron., 2008, 23, pp. 29903003, doi: 10.1109/TPEL.2008.2005034.
    12. 12)
      • 10. Oucheriah, S., Guo, L.P.: ‘PWM-based adaptive sliding-mode control for boost DC–DC converters’, IEEE Trans. Ind. Electron., 2013, 60, (8), pp. 32913294, doi: 10.1109/TIE.2012.2203769.
    13. 13)
      • 4. Thounthong, P.: ‘Control of a three-level boost converter based on a differential flatness approach for fuel cell vehicle applications’, IEEE Trans. Veh. Technol., 2012, 61, pp. 14671472, doi: 10.1109/TVT.2012.2183628.
    14. 14)
      • 8. Smithson, S.C., Williamson, S.S.: ‘Constant power loads in more electric vehicles – an overview’. Proc. IEEE 38th Annual Conf. IEEE Industrial Electronics Society, October 2012, doi: 10.1109/IECON.2012.6389432.
    15. 15)
      • 22. Wu, M., Dah-Chuan Lu, D., Tse, C.K.: ‘Direct and optimal linear active methods for stabilization of LC input filters and DC/DC converters under voltage mode control’, IEEE J. Emerging Sel. Top. Circuits Syst., 2015, 5, pp. 402412, doi: 10.1109/JETCAS.2015.2462171.
    16. 16)
      • 16. Jung, J.-H., Chang, P.-H., Kang, S.H.: ‘Stability analysis of discrete time delay control for nonlinear systems’. Proc. American Control Conf., July 2007, pp. 59956002, doi: 10.1109/ACC.2007.4282317.
    17. 17)
      • 7. Wang, Y., Yu, D., Kim, Y.: ‘Robust time-delay control for the DC–DC boost converter’, IEEE Trans. Ind. Electron., 2014, 61, pp. 48294837, doi: 10.1109/TIE.2013.2290764.
    18. 18)
      • 13. Samosir, A.S., Yatim, A.H.M.: ‘Implementation of dynamic evolution control of bidirectional DC–DC converter for interfacing ultracapacitor energy storage to fuel-cell system’, IEEE Trans. Ind. Electron., 2010, 57, (10), pp. 34683473, doi: 10.1109/TIE.2009.2039458.
    19. 19)
      • 20. Kim, J., Joe, H., Yu, S., et al: ‘Time-delay controller design for position control of autonomous underwater vehicle under disturbances’, IEEE Trans. Ind. Electron., 2016, 63, pp. 10521061, doi: 10.1109/TIE.2015.2477270.
    20. 20)
      • 15. Youcef-Toumi, K., Fuhlbrigge, T.A.: ‘Application of decentralized time-delay controller to robot manipulator’. Proc. IEEE Int. Conf. Robotics Automation, May 1989, vol. 3, pp. 17861791, doi: 10.1109/ROBOT.1989.100233.
    21. 21)
      • 9. Emadi, A., Khaligh, A., Rivetta, C.H., et al: ‘Constant power loads and negative impedance instability in automotive systems: definition, modeling, stability, and control of power electronic converters and motor drives’, IEEE Trans. Veh. Technol., 2006, 55, pp. 11121125, doi: 10.1109/TVT.2006.877483.
    22. 22)
      • 5. Perreault, D.J., Caliskan, V.: ‘Automotive power generation and control’, IEEE Trans. Power Electron., 2004, 19, pp. 618630, doi: 10.1109/TPEL.2004.826432.
    23. 23)
      • 3. Kassakian, J.G., Perreault, D.J.: ‘The future of electronics in automobiles’. Proc. IEEE Power Semiconductor Devices and ICs, June 2001, doi: 10.1109/ISPSD.2001.934550.
    24. 24)
      • 19. Kim, K.-H., Youn, M.-J.: ‘A simple and robust digital current control technique of a PM synchronous motor using time delay control approach’, IEEE Trans. Power Electron., 2001, 16, (1), pp. 7282, doi: 10.1109/63.903991.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2017.0005
Loading

Related content

content/journals/10.1049/iet-est.2017.0005
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading