http://iet.metastore.ingenta.com
1887

Modelling and design of improved powertrain solutions for electric and hybrid buses

Modelling and design of improved powertrain solutions for electric and hybrid buses

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Electrical Systems in Transportation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

There is a growing interest worldwide in reducing pollution and CO2 emissions from transportation field. Indeed, in recent years bus manufacturers have developed hybrid and electric versions of their products. In this regard, this study shows through a structured methodology how to model and design powertrains for pure electric and series-hybrid buses. First step is aimed to define a simulation model of the existing bus, experimentally validated, and then modelling and design of pure electric and hybrid powertrains. After analysing main drawbacks of pure electric vehicles fed by large and heavy batteries, and hybrid vehicles fed by diesel fuel, alternative solutions have been considered. In particular, different fuels, i.e. compressed natural or liquefied natural gas, have been analysed for the hybrid version, while a pure electric vehicle equipped with a reduced storage system able to be quickly recharged at bus stops has been introduced. In all the considered cases, particular attention has concerned the sizing of the electrochemical storage.

References

    1. 1)
      • 1. Wang, Q., Jiang, B., Li, B., et al: ‘A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles’, Renew. Sustain. Energy Rev., 2016, 64, pp. 106128.
    2. 2)
      • 2. Roselli, C., Sasso, M.: ‘Integration between electric vehicle charging and PV system to increase self-consumption of an office application’, Energy Convers. Manage., 2016, 130, pp. 130140.
    3. 3)
      • 3. Yu, H., Tarsitano, D., Hu, X., et al: ‘Real time energy management strategy for a fast charging electric urban bus powered by hybrid energy storage system’, Energy, 2016, 112, pp. 322331.
    4. 4)
      • 4. Hu, X., Zou, Y., Yang, Y.: ‘Greener plug-in hybrid electric vehicles incorporating renewable energy and rapid system optimization’, Energy, 2016, 111, pp. 971980.
    5. 5)
      • 5. Hu, X., Murgovski, N., Johannesson, L.M., et al: ‘Optimal dimensioning and power management of a fuel cell/battery hybrid bus via convex programming’, IEEE/ASME Trans. Mechatronics, 2015, 20, (1), pp. 457468.
    6. 6)
      • 6. Ehsani, M., Gao, Y., Gay, S.E., et al: ‘Modern electric, hybrid electric, and fuel cell vehicles: fundamentals, theory, and design’ (Marcel Dekker, New York, 2004).
    7. 7)
      • 7. Emadi, A., Ehsani, M., Miller, J.M.: ‘Vehicular electric power systems: land, sea, air, and space vehicles’ (Marcel Dekker, New York, 2003).
    8. 8)
      • 8. Salmasi, F.R.: ‘Control strategies for hybrid electric vehicles: evolution, classification, comparison, and future trends’, IEEE Trans. Veh. Technol., 2007, 56, (5), pp. 23932404.
    9. 9)
      • 9. Ehsani, M., Gao, Y., Gay, S.E., et al: ‘modern electric, hybrid electric, and fuel cell vehicles: fundamentals, theory, and design’ (CRC, Boca Raton, FL, 2004).
    10. 10)
      • 10. Lee, H.-D., Sul, S.-K.: ‘Fuzzy-logic-based torque control strategy for parallel-type hybrid electric vehicle’, IEEE Trans. Ind. Electron., 1998, 45, (4), pp. 625632.
    11. 11)
      • 11. Tate, E.D., Boyd, S.P.: ‘Finding ultimate limits of performance for hybrid electric vehicles’, 1998. SAE Paper 00FTT-50.
    12. 12)
      • 12. Hu, X., Martinez, C.M., Yang, Y.: ‘Charging, power management, and battery degradation mitigation in plug-in hybrid electric vehicles: a unified cost-optimal approach’, Mech. Syst. Signal Process., 2017, 87, pp. 416.
    13. 13)
      • 13. Lin, C.-C., Peng, H., Grizzle, J.W., et al: ‘Power management strategy for a parallel hybrid electric truck’, IEEE Trans. Control Syst. Technol., 2003, 11, (6), pp. 839848.
    14. 14)
      • 14. Yang, Y., Hu, X., Pei, H., et al: ‘Comparison of power-split and parallel hybrid powertrain architectures with a single electric machine: dynamic programming approach’, Appl. Energy2016, 168, pp. 683690.
    15. 15)
      • 15. Piccolo, A., Ippolito, L., Galdi, V., et al: ‘Optimization of energy flow management in hybrid electric vehicles via genetic algorithms’. Proc. IEEE/ASME Int. Conf. Advanced Intelligent Mechatronics, Como, Italy, 8–12 July 2001, pp. 434439.
    16. 16)
      • 16. den Bossche, P.V.: ‘Power sources for hybrid buses: comparative evaluation of the state of the art’, J. Power Sources, 1999, 80, pp. 213216.
    17. 17)
      • 17. Mock, P., Kuhlwein, J., Tietge, U., et al: ‘The WLTP: How a new test procedure for cars will affect fuel consumption values in the EU’. Int. Council of Clean Transportation (ICCT), 2014.
    18. 18)
      • 18. Sergi, F., Andaloro, L., Napoli, G., et al: ‘Development and realisation of a hydrogen range extender hybrid city bus’, J. Power Sources, 2014, 250, pp. 286295.
    19. 19)
      • 19. Zhang, J., Lv, C., Qiu, M., et al: ‘Braking energy regeneration control of a fuel cell hybrid electric bus’, Energy Convers. Manage., 2013, 76, pp. 11171124.
    20. 20)
      • 20. Folkesson, A., Adersson, C., Alvfors, P., et al: ‘Real life testing of a hybrid PEM fuel cell bus’, J. Power Sources, 2003, 118, pp. 349357.
    21. 21)
      • 21. Sanchez, J., Martinez, J., Martin, J., et al: ‘Impact of Spanish electricity mix, over the period 2008–2030, on the life cycle energy consumption and GHG emissions of electric, hybrid diesel-electric, fuel cell hybrid and diesel bus of the Madrid Transportation System’, Energy Convers. Manage., 2013, 74, pp. 332343.
    22. 22)
      • 22. Van Mierlo, J., Maggetto, G., Lataire, P.: ‘Which energy source for road transport in the future? A comparison of battery, hybrid and fuel cell vehicles’, Energy Convers. Manage., 2006, 47, pp. 27482760.
    23. 23)
      • 23. Wang, R., Wu, Y., Ke, W., et al: ‘Can propulsion and fuel diversity for the bus fleet achieve the win-win strategy of energy conservation and environmental protection?’, Appl. Energy, 2015, 147, pp. 92103.
    24. 24)
      • 24. Nanaki, E.A., Koroneos, C.J, Xydis, G.A., et al: ‘Comparative environmental assessment of Athens urban buses-Diesel, CNG and biofuel powered’, Transp. Policy, 2014, 35, pp. 311318.
    25. 25)
      • 25. Huria, T., Lutzemberger, G., Pede, G., et al: ‘Systematic development of series-hybrid bus through modelling’, VPPC, Lille, 1–3 September 2010.
    26. 26)
      • 26. ‘BredaMenariniBus official site’. Available at http://www.bredamenarinibus.it, accessed 28 December 2015.
    27. 27)
      • 27. ‘ENEA Official site’. Available at http://www.enea.it.
    28. 28)
      • 28. Industria 2015’. Available at https://setis.ec.europa.eu/energy-research/content/industry-2015, accessed 28 December 2015.
    29. 29)
      • 29. Fritzson, P.: ‘Introduction to modeling and simulation of technical and physical systems with modelica’ (Wiley-IEEE Press, 2011).
    30. 30)
      • 30. ‘Dymola official site’. Available at http://www.dymola.com, accessed 28 December 2015.
    31. 31)
      • 31. ‘UITP official site’. Available at http://www.uitp.org, accessed 28 December 2015.
    32. 32)
      • 32. Genovese, A., Geracitano, R., Leoncavallo, L., et al: ‘Fast charge and local public transport: an Italian experience’. ESARS 2015 Conf., Aachen, 3–5 March 2015.
    33. 33)
      • 33. Bolognesi, P., Lutzemberger, G.: ‘Sistema integrato di autobus elettrici con infrastruttura per ricariche intermedie. AEIT Annual Conf., Rome, 2012.
    34. 34)
      • 34. ‘TUV official site’. Available at http://www.tuv.it/home/default.asp, accessed 28 December 2015.
    35. 35)
      • 35. Ceraolo, M., Huria, T., Lutzemberger, G.: ‘Experimentally-determined models for high-power lithium batteries, SAE 2011 World Congress & Exhibition, SAE Technical Paper, 2011-01-1365. Available at http://dx.doi.org/10.4271/2011-01-1365.
    36. 36)
      • 36. Mapelli, F.L., Tarsitano, D., Mauri, M.: ‘Plug-in hybrid electric vehicle: modeling, prototype realization, and inverter losses reduction analysis’, IEEE Trans. Ind. Electron., 2010, 57, (2), pp. 598607.
    37. 37)
      • 37. Ceraolo, M.: ‘A new Modelica electric and hybrid powertrains library’. Proc. of the 11th Int. Modelica Conf.’, Versailles, France, 21–23 September 2015.
    38. 38)
      • 38. Onori, S., Serrao, L., Rizzoni, G.: ‘Hybrid electric vehicles: energy management strategies’ (Springer, 2016).
    39. 39)
      • 39. Ceraolo, M., di Donato, A., Franceschi, G.: ‘A general approach to energy optimization of hybrid electric vehicles’, IEEE Trans. Veh. Technol., 2008, 57, (3), pp. 14331441.
    40. 40)
      • 40. Barsali, S., Miulli, C., Possenti, A.: ‘A control strategy to minimize fuel consumption of series hybrid electric vehicles’, IEEE Trans. Energy Convers., 2004, 19, (1), pp. 187195.
    41. 41)
      • 41. Poli, D., di Donato, A., Lutzemberger, G.: ‘Experiences in modelling and simulation of hydrogen fuel-cell based propulsion systems’. 9th Int. Conf. on Engines and Vehicles (ICE2009), Capri, 13–18 September 2009.
    42. 42)
      • 42. Ceraolo, M., Doveri, N., Lutzemberger, G.: ‘Experiences of realization and test of a fuel-cell based vehicle’. Int. Symp. on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Pisa, 14–16 June 2010. Available at http://dx.doi.org/10.1109/SPEEDAM.2010.5542074.
    43. 43)
      • 43. Ceraolo, M., Lutzemberger, G., Mati, R., et al: ‘Realisation and test of a fuel-cell based vehicle’. Energy Conf. and Exhibition (ENERGYCON), 9–12 September 2012. Available at http://dx.doi.org/10.1109/EnergyCon.2012.6347718.
    44. 44)
      • 44. Bertini, A., Ceraolo, M., Lutzemberger, G.: ‘Systematic approach in the hybridisation of a hydraulic skid loader’, Autom. Constr., 2015, 58, pp. 144154. Available at http://dx.doi.org/10.1016/j.autcon.2015.07.013.
    45. 45)
      • 45. ‘Kokam official site’. Available at http://www.kokam.com, accessed 28 December 2015.
    46. 46)
      • 46. Pontefract, T., Kobayashi, K., Seki, K., et al: ‘On-road performance evaluation of the “Web-1 Advanced” short range, frequent charging electric micro bus. EVS 26, Los Angeles, 2012.
    47. 47)
      • 47. Ceraolo, M., Lutzemberger, G., Poli, D.: ‘Aging evaluation of high power lithium cells subjected to micro-cycles’, J. Energy Storage, 2016, 6, pp. 116124.
    48. 48)
      • 48. Ceraolo, M., Conte, M., Giglioli, R., et al: ‘Use of electrochemical storage in substations to enhance energy and cost efficiency of tramways’. AEIT Annual Conf., Mondello, PA, 3–5 October 2013.
    49. 49)
      • 49. Ouyang, M., Zhang, W., Wang, E., et al: ‘Performance analysis of a novel coaxial power-split hybrid powertrain using a CNG engine and supercapacitors’, Appl. Energy, 2015, 157, pp. 595606.
    50. 50)
      • 50. ‘Ecomotive solutions official site’. Available at http://www.ecomotive-solutions.com, accessed 28 December 2015.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2017.0003
Loading

Related content

content/journals/10.1049/iet-est.2017.0003
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address