http://iet.metastore.ingenta.com
1887

Review of prospects for adoption of fuel cell electric vehicles in New Zealand

Review of prospects for adoption of fuel cell electric vehicles in New Zealand

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Electrical Systems in Transportation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

New Zealand's (NZ) thirst for hydrocarbon-based fuels for transportation is rising exponentially, resulting in two severe consequences: first, severe emissions of greenhouse gases and a range of pollutants, and second, the dependence on foreign petroleum imports to provide those fuels. Thus there is a stimulus to develop, and to utilise, energy systems that are reliable and sustainable. The implementation of the hydrogen-based fuel cell (FC) system for electric vehicles (EVs) appears to be a promising solution because the FC is now established as a reliable, non-polluting energy source, having a high power density that competes favourably with the conventional internal combustion (IC) engine and the battery vehicle. This study provides a comprehensive review of the proton exchange membrane (PEM)-based FC, and assesses its potential in FC vehicles as an alternative to internal-combustion-based vehicles for NZ cities. The study indicates a need for FCs to penetrate the automotive market, plus key government and business strategies for the introduction of PEM EVs.

References

    1. 1)
      • M. Jaforullah , A. King .
        1. Jaforullah, M., King, A.: ‘The demand for imported oil: New Zealand's post-deregulation experience’, New Zealand Econ. Pap., 2016, pp. 113.
        . New Zealand Econ. Pap. , 1 - 13
    2. 2)
      • M.Z. Jacobson .
        2. Jacobson, M.Z.: ‘Review of solutions to global warming, air pollution, and energy security’, Energy Environ. Sci., 2009, 2, (2), pp. 148173.
        . Energy Environ. Sci. , 2 , 148 - 173
    3. 3)
      • G.W. Fisher , K.A. Rolfe , T. Kjellstrom .
        3. Fisher, G.W., Rolfe, K.A., Kjellstrom, T., et al: ‘Health effects due to motor vehicle air pollution in New Zealand’ (Ministry of Transport, Wellington, 2002).
        .
    4. 4)
      • K. Chetty , V. Devadas , J. Fleming .
        4. Chetty, K., Devadas, V., Fleming, J.: ‘The framing of climate change in New Zealand newspapers from June 2009 to June 2010’, J. R. Soc. New Zealand, 2015, 45, (1), pp. 120.
        . J. R. Soc. New Zealand , 1 , 1 - 20
    5. 5)
      • A. Bibbee .
        5. Bibbee, A.: ‘Green growth and climate change policies in New Zealand’, 2011.
        .
    6. 6)
      • J. Goldemberg .
        6. Goldemberg, J.: ‘Environmental and ecological dimensions of biofuels’. Proc. of the Conf. on the Ecological Dimensions of Biofuels, Washington, DC, 2008.
        . Proc. of the Conf. on the Ecological Dimensions of Biofuels
    7. 7)
      • R.B. Gupta . (2008)
        7. Gupta, R.B.: ‘Hydrogen fuel: production, transport, and storage’ (CRC Press, 2008).
        .
    8. 8)
      • S. Pethaiah , A. Jayakumar , M. Ramos .
        8. Pethaiah, S., Jayakumar, A., Ramos, M., et al: ‘The impact of anode design on fuel crossover of direct ethanol fuel cell’, Bull. Mater. Sci., 2016, pp. 16.
        . Bull. Mater. Sci. , 1 - 6
    9. 9)
      • H. Liebhafsky .
        9. Liebhafsky, H.: ‘The fuel cell and the Carnot cycle’, J. Electrochem. Soc., 1959, 106, (12), pp. 10681071.
        . J. Electrochem. Soc. , 12 , 1068 - 1071
    10. 10)
      • B. Canis . (2011)
        10. Canis, B.: ‘Battery manufacturing for hybrid and electric vehicles: policy issues’ (Congressional Research Service, Library of Congress, USA, 2011).
        .
    11. 11)
      • A. Emadi , Y. Lee , K. Rajashekara .
        11. Emadi, A., Lee, Y., Rajashekara, K.: ‘Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles’, IEEE Trans. Ind. Electron., 2008, 55, (6), pp. 22372245.
        . IEEE Trans. Ind. Electron. , 6 , 2237 - 2245
    12. 12)
      • M. Duke , T. Anderson .
        12. Duke, M., Anderson, T.: ‘The potential for battery electric vehicles in New Zealand’. Energy, Transport and Sustainability Symp., 2008.
        . Energy, Transport and Sustainability Symp.
    13. 13)
      • C. Cleveland , C. Morris . (2005)
        13. Cleveland, C., Morris, C.: ‘Dictionary of energy’ (Elsevier, 2005).
        .
    14. 14)
      • A.A. Pesaran , T. Markel , H.S. Tataria . (2009)
        14. Pesaran, A.A., Markel, T., Tataria, H.S., et al: ‘Battery requirements for plug-in hybrid electric vehicles – analysis and rationale’ (National Renewable Energy Laboratory, 2009).
        .
    15. 15)
      • J. Beretta . (2013)
        15. Beretta, J.: ‘Automotive electricity: electric drives’ (John Wiley & Sons, 2013).
        .
    16. 16)
      • M. Tran , D. Banister , D.K.J. Bishop .
        16. Tran, M., Banister, D., Bishop, D.K.J., et al: ‘Realizing the electric-vehicle revolution’, Nat. Clim. Change, 2012, 2, (5), pp. 328333.
        . Nat. Clim. Change , 5 , 328 - 333
    17. 17)
      • A. Adepetu , S. Keshav , V. Arya .
        17. Adepetu, A., Keshav, S., Arya, V.: ‘An agent-based electric vehicle ecosystem model: San Francisco case study’, Transp. Pol., 2016, 46, pp. 109122.
        . Transp. Pol. , 109 - 122
    18. 18)
      • K. Chau , Y. Wong .
        18. Chau, K., Wong, Y.: ‘Overview of power management in hybrid electric vehicles’, Energy Convers. Manage., 2002, 43, (15), pp. 19531968.
        . Energy Convers. Manage. , 15 , 1953 - 1968
    19. 19)
      • F. Barbir . (2013)
        19. Barbir, F.: ‘PEM fuel cells: theory and practice’ (Academic Press, 2013).
        .
    20. 20)
      • P. Bubna , D. Brunner , S.G. Advani .
        20. Bubna, P., Brunner, D., Advani, S.G., et al: ‘Prediction-based optimal power management in a fuel cell/battery plug-in hybrid vehicle’, J. Power Sources, 2010, 195, (19), pp. 66996708.
        . J. Power Sources , 19 , 6699 - 6708
    21. 21)
      • A. Jayakumar , S.P. Sethu , M. Ramos .
        21. Jayakumar, A., Sethu, S.P., Ramos, M., et al: ‘A technical review on gas diffusion, mechanism and medium of PEM fuel cell’, Ionics, 2015, 21, (1), pp. 118.
        . Ionics , 1 , 1 - 18
    22. 22)
      • A. LaConti , M. Hamdan , R. McDonald . (2003)
        22. LaConti, A., Hamdan, M., McDonald, R.: ‘Handbook of fuel cells – fundamentals, technology and applications’ (John Wiley & Sons Ltd, Chichester, 2003), vol. 3.
        .
    23. 23)
      • H. Liu , A. Laconti , H. Gasteiger . (2006)
        23. Liu, H., Laconti, A., Gasteiger, H., et al: ‘Durability and reliability of low-temperature fuel cells systems’, in Jarvi, T. (Ed.): ‘ECS transactions’, 2006, vol. 1, p. 8.
        .
    24. 24)
      • V. Mittal , H. Kunz , J. Fenton .
        24. Mittal, V., Kunz, H., Fenton, J.: ‘Is H2O2 involved in the membrane degradation mechanism in PEMFC?’, Electrochem. Solid-State Lett., 2006, 9, (6), pp. A299A302.
        . Electrochem. Solid-State Lett. , 6 , A299 - A302
    25. 25)
      • S. Manzetti , F. Mariasiu .
        25. Manzetti, S., Mariasiu, F.: ‘Electric vehicle battery technologies: from present state to future systems’, Renew. Sustain. Energy Rev., 2015, 51, pp. 10041012.
        . Renew. Sustain. Energy Rev. , 1004 - 1012
    26. 26)
      • S. Chalk , J. Miller .
        26. Chalk, S., Miller, J.: ‘Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems’, J. Power Sources, 2006, 159, (1), pp. 7380.
        . J. Power Sources , 1 , 73 - 80
    27. 27)
      • Y. Assolami , W. Morsi .
        27. Assolami, Y., Morsi, W.: ‘Impact of second-generation plug-in battery electric vehicles on the aging of distribution transformers considering TOU prices’, IEEE Trans. Sustain. Energy, 2015, 6, (4), pp. 16061614.
        . IEEE Trans. Sustain. Energy , 4 , 1606 - 1614
    28. 28)
      • R. Samsun . (2016)
        28. Samsun, R.: ‘Global development status of fuel cell vehicles’, in Stolten, D., Samsun, R.C., Garland, N. (Eds.): ‘Fuel Cells: Data Facts Fig., (Wiley-VCH, Weinheim, 2016, 1st edn.), pp. 3960.
        .
    29. 29)
      • 29. U.S. Environmental Protection Agency and US Department of Energy: ‘Compare fuel cell vehicles’, 2016.
        .
    30. 30)
      • C. Thomas .
        30. Thomas, C.: ‘Fuel cell and battery electric vehicles compared’, Int. J. Hydrog. Energy, 2009, 34, (15), pp. 60056020.
        . Int. J. Hydrog. Energy , 15 , 6005 - 6020
    31. 31)
      • J. Ally , T. Pryor , A. Pigneri .
        31. Ally, J., Pryor, T., Pigneri, A.: ‘The role of hydrogen in Australia's transport energy mix’, Int. J. Hydrog. Energy, 2015, 40, (13), pp. 44264441.
        . Int. J. Hydrog. Energy , 13 , 4426 - 4441
    32. 32)
      • L. Zheng , J. Zhang .
        32. Zheng, L., Zhang, J.: ‘Analysis and applications of the regenerative braking force in pure electric vehicles’, Int. J. Electr. Hybrid Veh., 2012, 4, (1), pp. 1223.
        . Int. J. Electr. Hybrid Veh. , 1 , 12 - 23
    33. 33)
      • C. Heaton . (1991)
        33. Heaton, C.: ‘Sources of chemicals’, in ‘An introduction to industrial chemistry’ (Springer, 1991), pp. 1744.
        .
    34. 34)
      • V. Smil .
        34. Smil, V.: ‘Energy in the twentieth century: resources, conversions, costs, uses, and consequences’, Annu. Rev. Energy Environ., 2000, 25, (1), pp. 2151.
        . Annu. Rev. Energy Environ. , 1 , 21 - 51
    35. 35)
      • J. Funk .
        35. Funk, J.: ‘Thermochemical hydrogen production: past and present’, Int. J. Hydrog. Energy, 2001, 26, (3), pp. 185190.
        . Int. J. Hydrog. Energy , 3 , 185 - 190
    36. 36)
      • J. Genovese , K. Harg , M. Paster . (2009)
        36. Genovese, J., Harg, K., Paster, M., et al: ‘Current state-of-the-art hydrogen production cost estimate using water electrolysis’ (NRE Laboratory, US Department of Energy, 2009).
        .
    37. 37)
      • S. Shin , J.Y. Jung , M.J. Park .
        37. Shin, S., Jung, J.Y., Park, M.J., et al: ‘Catalyst-free hydrogen evolution of Si photocathode by thermovoltage-driven solar water splitting’, J. Power Sources, 2015, 279, pp. 151156.
        . J. Power Sources , 151 - 156
    38. 38)
      • M. Modestino , S. Haussener .
        38. Modestino, M., Haussener, S.: ‘An Integrated device view on photo-electrochemical solar-hydrogen generation’, Annu. Rev. Chem. Biomol. Eng., 2015, 6, pp. 1334.
        . Annu. Rev. Chem. Biomol. Eng. , 13 - 34
    39. 39)
      • M. Roche , S. Mourato , M. Fischedick .
        39. Roche, M., Mourato, S., Fischedick, M., et al: ‘Public attitudes towards and demand for hydrogen and fuel cell vehicles: A review of the evidence and methodological implications’, Energy Policy, 2010, 38, (10), pp. 53015310.
        . Energy Policy , 10 , 5301 - 5310
    40. 40)
      • J. Andrews , B. Shabani .
        40. Andrews, J., Shabani, B.: ‘Re-envisioning the role of hydrogen in a sustainable energy economy’, Int. J. Hydrog. Energy, 2012, 37, (2), pp. 11841203.
        . Int. J. Hydrog. Energy , 2 , 1184 - 1203
    41. 41)
      • (2005)
        41. World Health Organization: ‘Health effects of transport-related air pollution’ (WHO Regional Office for Europe, Copenhagen, 2005).
        .
    42. 42)
      • S. Adar , D.R. Gold , B.A. Coull .
        42. Adar, S., Gold, D.R., Coull, B.A., et al: ‘Focused exposures to airborne traffic particles and heart rate variability in the elderly’, Epidemiology, 2007, 18, (1), pp. 95103.
        . Epidemiology , 1 , 95 - 103
    43. 43)
      • J. McCreanor , P. Cullinan , M.J. Nieuwenhuijsen .
        43. McCreanor, J., Cullinan, P., Nieuwenhuijsen, M.J., et al: ‘Respiratory effects of exposure to diesel traffic in persons with asthma’, N. Engl. J. Med., 2007, 357, (23), pp. 23482358.
        . N. Engl. J. Med. , 23 , 2348 - 2358
    44. 44)
      • M. Strak , H. Boogaard , K. Meliefste .
        44. Strak, M., Boogaard, H., Meliefste, K., et al: ‘Respiratory health effects of ultrafine and fine particle exposure in cyclists’, Occup. Environ. Med., 2010, 67, (2), pp. 118124.
        . Occup. Environ. Med. , 2 , 118 - 124
    45. 45)
      • S. Shaw , L. Bunce . (2015)
        45. Shaw, S., Bunce, L.: ‘Electrifying London: connecting with mainstream markets’, in ‘E-Mobility in Europe’ (Springer, 2015), pp. 141160.
        .
    46. 46)
      • C. Thomas , B. James , F. Lomax .
        46. Thomas, C., James, B., Lomax, F.: ‘Market penetration scenarios for fuel cell vehicles’, Int. J. Hydrog. Energy, 1998, 23, (10), pp. 949966.
        . Int. J. Hydrog. Energy , 10 , 949 - 966
    47. 47)
      • R. Kemp , P. Blythe , C. Brace .
        47. Kemp, R., Blythe, P., Brace, C., et al: ‘Electric vehicles: charged with potential’ (The Royal Academy of Engineering, London, 2010).
        .
    48. 48)
      • A. Eagly , S. Chaiken . (1993)
        48. Eagly, A., Chaiken, S.: ‘The psychology of attitudes’ (Harcourt Brace Jovanovich College Publishers, 1993).
        .
    49. 49)
      • I. Ajzen .
        49. Ajzen, I.: ‘The theory of planned behavior’, Organ. Behav. Hum. Decis. Process., 1991, 50, (2), pp. 179211.
        . Organ. Behav. Hum. Decis. Process. , 2 , 179 - 211
    50. 50)
      • Y. Yamamoto , A. Suzuki , Y. Fuwa .
        50. Yamamoto, Y., Suzuki, A., Fuwa, Y., et al: ‘Decision-making in electrical appliance use in the home’, Energy Policy, 2008, 36, (5), pp. 16791686.
        . Energy Policy , 5 , 1679 - 1686
    51. 51)
      • (2014)
        51. Ministry of Business Innovation and Employment: ‘Energy in New Zealand’ (New Zealand Government, 2014).
        .
    52. 52)
      • S. Lukic , J. Cao , R.C. Bansal .
        52. Lukic, S., Cao, J., Bansal, R.C., et al: ‘Energy storage systems for automotive applications’, IEEE Trans. Ind. Electron., 2008, 55, (6), pp. 22582267.
        . IEEE Trans. Ind. Electron. , 6 , 2258 - 2267
    53. 53)
      • J. Chang , K. Lee , P. Lin .
        53. Chang, J., Lee, K., Lin, P.: ‘Biohydrogen production with fixed-bed bioreactors’, Int. J. Hydrog. Energy, 2002, 27, (11), pp. 11671174.
        . Int. J. Hydrog. Energy , 11 , 1167 - 1174
    54. 54)
      • R. von Helmolt , U. Eberle .
        54. von Helmolt, R., Eberle, U.: ‘Fuel cell vehicles: status 2007’, J. Power Sources, 2007, 165, (2), pp. 833843.
        . J. Power Sources , 2 , 833 - 843
    55. 55)
      • I. Aharon , A. Kuperman .
        55. Aharon, I., Kuperman, A.: ‘Topological overview of powertrains for battery-powered vehicles with range extenders’, IEEE Trans. Power Electron., 2011, 26, (3), pp. 868876.
        . IEEE Trans. Power Electron. , 3 , 868 - 876
    56. 56)
      • A. Kulikovsky , H. Scharmann , K. Wippermann .
        56. Kulikovsky, A., Scharmann, H., Wippermann, K.: ‘Dynamics of fuel cell performance degradation’, Electrochem. Commun., 2004, 6, (1), pp. 7582.
        . Electrochem. Commun. , 1 , 75 - 82
    57. 57)
      • 57. Fuel Cell Technologies Office: ‘Multi-year research, development and demonstration plan’, 2012.
        .
    58. 58)
      • J. Marcinkoski , J. Kopasz , T. Benjamin .
        58. Marcinkoski, J., Kopasz, J., Benjamin, T.: ‘Progress in the US DOE fuel cell subprogram efforts in polymer electrolyte fuel cells’, Int. J. Hydrog. Energy, 2008, 33, (14), pp. 38943902.
        . Int. J. Hydrog. Energy , 14 , 3894 - 3902
    59. 59)
      • R. Stobart .
        59. Stobart, R.: ‘Fuel Cell power for passenger cars—What barriers remain?’, SAE Technical Paper, 1999.
        .
    60. 60)
      • J. Wang , W. Chiang , J. Shu .
        60. Wang, J., Chiang, W., Shu, J.: ‘The prospects—fuel cell motorcycle in Taiwan’, J. Power Sources, 2000, 86, (1), pp. 151157.
        . J. Power Sources , 1 , 151 - 157
    61. 61)
      • (2012)
        61. U.S. Department of Energy: ‘FY12 Annual progress report for the DOE hydrogen and fuel cells program’ (US Department of Energy, Washington, D.C, 2012).
        .
    62. 62)
      • (2013)
        62. U.S. Department of Energy: ‘Fuel cell technologies market report’ (U.S. Department of Energy, Washington, D.C, 2013).
        .
    63. 63)
      • A. Jayakumar , M. Ramos , A. Al-Jumaily .
        63. Jayakumar, A., Ramos, M., Al-Jumaily, A.: ‘A Novel fuzzy schema to control the temperature and humidification of PEM fuel cell system’. ASME 2015 13th Int. Conf. on Fuel Cell Science, Engineering and Technology, American Society of Mechanical Engineers.
        . ASME 2015 13th Int. Conf. on Fuel Cell Science, Engineering and Technology, American Society of Mechanical Engineers
    64. 64)
      • A. Jayakumar , M. Ramos , A. Al-Jumaily .
        64. Jayakumar, A., Ramos, M., Al-Jumaily, A.: ‘A Novel 3D printing technique to synthesise gas diffusion layer for PEM fuel cell application’. ASME 2016 Int. Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers.
        . ASME 2016 Int. Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2016.0078
Loading

Related content

content/journals/10.1049/iet-est.2016.0078
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address