access icon free Design of a five-phase permanent-magnet motor for the electric steering of an aircraft nose landing gear

Recently, there has been a growing interest in reducing the number or replacing the hydraulic/pneumatic actuators utilised on aircraft with electric actuators coupled to mechanical gears, which would improve the reliability and performance. This is involved in the concept of more electric aircraft. The electrification of actuators would affect the primary and secondary flight controls, as well as the movement of flight surfaces, retraction of the landing gear, and steering of the nose landing gear, which is also considered in this study. This study considers the design of a multiphase permanent-magnet (PM) motor to be utilised for the electric steering of a commercial aircraft nose landing gear. This multiphase motor would make it possible to achieve a highly reliable actuator and, coupled with a harmonic drive, avoid the use of a multi-motor configuration. Moreover, a multiphase motor would increase the power density and efficiency of the actuator, through improving the torque ripple. The performance variation due to temperature swings is considered, and a design procedure for the PM motor is described using the worse operation case for the electric actuator. The adequate performance of the designed motor and actuator is demonstrated by means of a finite element analysis.

Inspec keywords: finite element analysis; steering systems; aircraft; permanent magnet motors

Other keywords: torque ripple; finite element analysis; electric actuator; power density; PM motor; temperature swings; aircraft nose landing gear; electric steering; five-phase permanent-magnet motor; multiphase permanent-magnet motor; harmonic drive

Subjects: a.c. machines; Transportation; Finite element analysis; d.c. machines

References

    1. 1)
      • 4. http://www.cleansky.eu/.
    2. 2)
      • 25. Arnold magnetics: ‘RECOMA® samarium cobalt magnets’. Available at http://www.arnoldmagnetics.com/en-us/Products/RECOMA-SmCo-Magnets-en, accessed 13 March 2017.
    3. 3)
      • 18. Abbass, H.A., Sarker, R., Newton, C.: ‘PDE: a Pareto-frontier differential evolution approach for multi-objective optimization problems’. Proc. 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), Seoul, 2001, vol. 2, pp. 971978.
    4. 4)
      • 1. Sarlioglu, B., Morris, C.T.: ‘More electric aircraft: review, challenges, and opportunities for commercial transport aircraft’, IEEE Trans. Transp. Electrification, 2015, 1, (1), pp. 5464.
    5. 5)
      • 23. Boglietti, A., Cavagnino, A., Lazzari, M., et al: ‘A simplified thermal model for variable-speed self-cooled industrial induction motor’, IEEE Trans. Ind. Appl., 2003, 39, (4), pp. 945952.
    6. 6)
      • 22. Fiorillo, F., Novikov, A.: ‘An improved approach to power losses in magnetic laminations under nonsinusoidal induction waveform’, IEEE Trans. Magn., 1990, 26, (5), pp. 29042910.
    7. 7)
      • 6. Bennett, J.W., Mecrow, B.C., Jack, A.G., et al: ‘A prototype electrical actuator for aircraft flaps’, IEEE Trans. Ind. Appl., 2010, 46, (3), pp. 915921.
    8. 8)
      • 15. Brando, G., Dannier, A., Di Noia, L.P., et al: ‘Design of a PMSM for the electric steering of the nose landing gear’. Proc. Int. Symp. Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Anacapri, 2016, pp. 371375.
    9. 9)
      • 17. Bianchi, N., Bolognani, S., Dai Pre, M., et al: ‘Design considerations for fractional-slot winding configurations of synchronous machines’, IEEE Trans. Ind. Appl., 2006, 42, (4), pp. 9971006.
    10. 10)
      • 5. Churn, P.M., Maxwell, C.J., Schofield, N., et al: ‘Electro-hydraulic actuation of primary flight control surfaces’. Proc. IEE Colloquium All Electric Aircraft (Dig. no. 260), 1998, pp. 3/13/5.
    11. 11)
      • 26. Meeker, D.C.: ‘Finite element method magnetics’, Version 4.2 (12 January 2016 Build), http://www.femm.info.
    12. 12)
      • 19. Storn, R., Price, K.: ‘Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces’, J. Global Optim., 1997, 11, (4), pp. 341359.
    13. 13)
      • 7. Van den Bossche, D.: ‘The A380 flight control electrohydrostatic actuators, achievements and lessons learnt’. Proc. 25th Int. Congress of the Aeronautical Sciences, Hamburg, Germany, 3–8 September 2006.
    14. 14)
      • 13. Federal Aviation Administration: ‘Aviation maintenance handbook – airframe’, vol. 2, 2012.
    15. 15)
      • 8. Bennett, J.W., Mecrow, B.C., Atkinson, D.J., et al: ‘Fault-tolerant electric drive for an aircraft nose wheel steering actuator’, IET Electr. Syst. Transp., 2011, 1, (3), pp. 117125.
    16. 16)
      • 9. Wijekoon, T., Empringham, L., Wheeler, P.W., et al: ‘Aircraft electrical landing gear actuation using dual-output power converter with mutual power circuit components’. Proc. Twenty-Fourth Annual IEEE Applied Power Electronics Conf. and Exposition, Washington DC, USA, 15–19 February 2009, pp. 12631268.
    17. 17)
      • 20. Gieras, J.F., Wing, M.: ‘Permanent magnet motor technology’ (Marcel Dekker edn, New York, 2002).
    18. 18)
      • 14. Brando, G., Dannier, A., Del Pizzo, A., et al: ‘Nose landing gears using axial-flux. Permanent-magnet motors’. Proc. Int. Conf. Electrical Machines (ICEM), Lousanne, Switzerland, 2016.
    19. 19)
      • 11. Li, W., Fielding, J.P.: ‘Preliminary study of EMA landing gear actuation’. Proc. 28th Int. Congress of the Aeronautical Sciences, Brisbane, Australia, 23–28 September 2012.
    20. 20)
      • 10. Sciascera, C., Giangrande, P., Brunson, C., et al: ‘Optimal design of an electro-mechanical actuator for aerospace application’. Proc. 41st Annual Conf. IEEE Industrial Electronics Society, Yokohama, Japan, 9–12 November 2015.
    21. 21)
      • 21. Bertotti, G.: ‘General properties of power losses in soft ferromagnetic materials’, IEEE Trans. Magn., 1988, 24, (1), pp. 621630.
    22. 22)
      • 2. Tan, D.: ‘Transportation electrification: challenges and opportunities’, IEEE Power Electron. Mag., 2016, 3, (2), pp. 5052.
    23. 23)
      • 12. Federal Aviation Administration: ‘Aviation maintenance handbook – airframe’, vol. 1, 2012.
    24. 24)
      • 16. Bianchi, N., Bolognani, S., Dai Pre, M.: ‘Impact of stator winding of a five-phase permanent-magnet motor on postfault operations’, IEEE Trans. Ind. Electron., 2008, 55, (5), pp. 19781987.
    25. 25)
      • 3. Li, J., Yu, Z., Huang, Y., et al: ‘A review of electromechanical actuation system for more electric aircraft’. 2016 IEEE Int. Conf. Aircraft Utility Systems (AUS), 2016, pp. 490497.
    26. 26)
      • 24. Arnold magnetics: ‘Neodymium-iron-boron magnets’. Available at http://www.arnoldmagnetics.com/en-us/Products/Neodymium-Magnets/, accessed 13 March 2017.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2016.0073
Loading

Related content

content/journals/10.1049/iet-est.2016.0073
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading