http://iet.metastore.ingenta.com
1887

Optimal number of e-buses in the solar-assisted smart public transit system and its failure analysis

Optimal number of e-buses in the solar-assisted smart public transit system and its failure analysis

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Electrical Systems in Transportation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents an optimal number of electric buses in the solar-assisted smart public transit system and its failure analysis. Electric buses are used to perform the mass transportation in the Guwahati city, Assam, India. The charging points have been provided through the ring road of the city to charge the electric buses. Every charging point consists of a high-capacity energy storage device (ESD) and the solar plant for achieving the smooth functionality of the transportation system. Optimal numbers of electric buses have been determined as a function of the load, the ESD, the solar plant and the passenger total. Simulations have been carried out to show the system response for the optimal number of electric buses and for the failures that exist in the system. Every charging point consists of a fuzzy logic controller to control the power flow among the grid, ESD and the solar plant.

References

    1. 1)
      • M. Ehsani , Y. Gao , A. Emadi . (2010)
        1. Ehsani, M., Gao, Y., Emadi, A.: ‘Modern electric, hybrid electric and fuel cell vehicles fundamentals, theory and design’ (CRC Press, 2010, 2nd edn.), pp. 127.
        .
    2. 2)
      • C.C. Chan .
        2. Chan, C.C.: ‘The rise & fall of electric vehicles in 1828–1930: lessons learned’, Proc. IEEE, 2013, 101, (1), pp. 206212.
        . Proc. IEEE , 1 , 206 - 212
    3. 3)
      • K. Qian , C. Zhou , M. Allan .
        3. Qian, K., Zhou, C., Allan, M., et al: ‘Modeling of load demand due to EV battery charging in distribution systems’, IEEE Trans. Power Syst., 2011, 26, (2), pp. 802810.
        . IEEE Trans. Power Syst. , 2 , 802 - 810
    4. 4)
      • S. Deilami , A.S. Masoum , P.S. Moses .
        4. Deilami, S., Masoum, A.S., Moses, P.S., et al: ‘Real-time coordination of plug-in electric vehicle charging in smart grids to minimize power losses and improve voltage profile’, IEEE Trans. Smart Grid, 2011, 2, (3), pp. 456467.
        . IEEE Trans. Smart Grid , 3 , 456 - 467
    5. 5)
      • A. Diez , E. Velandia , M. Restrepo .
        5. Diez, A., Velandia, E., Restrepo, M.: ‘Trolleybuses in smart grids as effective strategy to reduce greenhouse emissions’. Proc. Int. Conf. Electric Vehicle, Greenville, SC, March 2012, pp. 16.
        . Proc. Int. Conf. Electric Vehicle , 1 - 6
    6. 6)
      • H. Thomas .
        6. Thomas, H.: ‘The electric trolley bus’, J. IET, 1933, 3, (11), pp. 152155.
        . J. IET , 11 , 152 - 155
    7. 7)
      • R. Barero , X. Tackoen .
        7. Barero, R., Tackoen, X.: ‘Energy savings in public transport’, IEEE Veh. Technol. Mag., 2008, 3, (3), pp. 2636.
        . IEEE Veh. Technol. Mag. , 3 , 26 - 36
    8. 8)
      • 8. Supercapacitor based buses for urban transportation. Available at http://www.slideshare.net/ResearchIndia/super-capacitor-buses-in-shanghai-5156990.
        .
    9. 9)
      • Y. Jang , E. Suh , J. Kim .
        9. Jang, Y., Suh, E., Kim, J.: ‘System architecture and mathematical models of electric transit bus system utilizing wireless power transfer technology’, IEEE Syst. J., 2016, 10, (2), pp. 495506.
        . IEEE Syst. J. , 2 , 495 - 506
    10. 10)
      • T.B. Reddy . (2011)
        10. Reddy, T.B.: ‘Linden's handbook of batteries’ (McGraw-Hill, 2011, 4th edn.), pp. 30.4130.45.
        .
    11. 11)
      • X. Qiu , A. Nguyen , A. Elmore .
        11. Qiu, X., Nguyen, A., Elmore, A.: ‘A field validated model of a vanadium redox flow battery for micro grids’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 15921601.
        . IEEE Trans. Smart Grid , 4 , 1592 - 1601
    12. 12)
      • A. Agrawal , P. Kumar .
        12. Agrawal, A., Kumar, P.: ‘Smart public transit system using an energy storage system and its coordination with a distribution grid’, IEEE Trans. Intell. Transp. Syst., 2014, 99, pp. 111.
        . IEEE Trans. Intell. Transp. Syst. , 1 - 11
    13. 13)
      • M. Zandi , A. Payman , F. Tabar .
        13. Zandi, M., Payman, A., Tabar, F.: ‘Energy management of a fuel cell/supercapacitor/battery power source for electric vehicular applications’, IEEE Trans. Veh. Technol., 2011, 60, (2), pp. 433443.
        . IEEE Trans. Veh. Technol. , 2 , 433 - 443
    14. 14)
      • A. Hammar , P. Venet , G. Rojat .
        14. Hammar, A., Venet, P., Rojat, G.: ‘Study of accelerated aging of supercapacitors for transport applications’, IEEE Trans. Ind. Electron., 2010, 57, (12), pp. 39723979.
        . IEEE Trans. Ind. Electron. , 12 , 3972 - 3979
    15. 15)
      • A. Hijazi , P. Kreczanik , M. Loreto .
        15. Hijazi, A., Kreczanik, P., Loreto, M.: ‘Thermal network model of supercapacitors stack’, IEEE Trans. Ind. Electron., 2012, 59, (2), pp. 979987.
        . IEEE Trans. Ind. Electron. , 2 , 979 - 987
    16. 16)
      • P. Khatun , C. Bingham , N. Schofield .
        16. Khatun, P., Bingham, C., Schofield, N., et al: ‘Application of fuzzy control algorithms for electric vehicle antilock braking/traction control systems’, IEEE Trans. Veh. Technol., 2003, 52, (5), pp. 13561364.
        . IEEE Trans. Veh. Technol. , 5 , 1356 - 1364
    17. 17)
      • N. Schouten , A. Salman , A. Kheir .
        17. Schouten, N., Salman, A., Kheir, A.: ‘Fuzzy logic control for parallel hybrid vehicles’, IEEE Trans. Control Syst. Technol., 2002, 10, (3), pp. 460468.
        . IEEE Trans. Control Syst. Technol. , 3 , 460 - 468
    18. 18)
      • M. Singh , P. Kumar , I. Kar .
        18. Singh, M., Kumar, P., Kar, I.: ‘Implementation of vehicle to grid infrastructure using fuzzy logic controller’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 565577.
        . IEEE Trans. Smart Grid , 1 , 565 - 577
    19. 19)
      • M. Rohmanuddin , H. Liong , S. Ahmad .
        19. Rohmanuddin, M., Liong, H., Ahmad, S.: ‘Simplifying fuzzy rule base of multiple input multiple output systems by constructing multi-layer fuzzy controller’. Proc. Int. Conf. Man and Cybernetics, Nashville, TN, October 2000, pp. 37283733.
        . Proc. Int. Conf. Man and Cybernetics , 3728 - 3733
    20. 20)
      • H. Ying .
        20. Ying, H.: ‘Analytical structure of a two-input two-output fuzzy controller’. Proc. Int. Conf. Fuzzy Control and Intelligent Systems, Huston, TX, December 1993, pp. 123127.
        . Proc. Int. Conf. Fuzzy Control and Intelligent Systems , 123 - 127
    21. 21)
      • (2012)
        21. Assam State Electricity Board (ASEB): Guwahati, India, 2012. Available at http://aseb.in/.
        .
    22. 22)
      • 22. Guwahati Electric Circle-1 and Guwahati Electric Circle-2, Assam Power Distribution Company limited. Available at ‘http://www.mybijulibill.com/about_GEC1_profile.jsp.
        .
    23. 23)
      • M. Bhaskar Naik , P. Kumar , S. Majhi .
        23. Bhaskar Naik, M., Kumar, P., Majhi, S.: ‘Small-scale solar plants coupled with smart public transport system and its coordination with the grid’, J. IET Elect. Syst. Transp., 2017, 7, (2), pp. 135144, doi: 10.1049/iet-est.2016.0039.
        . J. IET Elect. Syst. Transp. , 2 , 135 - 144
    24. 24)
      • 24. Optimal power flow problem and solution methodologies. Available at http://shodhganga.inflibnet.ac.in/bitstream/10603/4566/13/13_chapter3.pdf.
        .
    25. 25)
      • 25. India Meteorological Department (IMD): Guwahati, Assam, India. Available at www.imd.gov.in.
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2016.0071
Loading

Related content

content/journals/10.1049/iet-est.2016.0071
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address