http://iet.metastore.ingenta.com
1887

Comparison of traction motors that reduce or eliminate rare-earth materials

Comparison of traction motors that reduce or eliminate rare-earth materials

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Electrical Systems in Transportation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Important global efforts are underway toward lowering the cost of electric machines for electric and hybrid vehicles by reducing or eliminating the use of rare earth materials which have been experiencing significant price increases and volatility. This study will present several designs that reduce or eliminate rare-earth materials. All these designs are targeting the same set of specifications of 55 kW peak at 2800 rpm and 30 kW continuous over a speed range going from 2800–14,000 rpm. This provides a fair basis of comparison of various machine topologies. The study will provide a quantitative comparison of the performance of various machine topologies as well as highlight the key tradeoffs.

References

    1. 1)
      • 1. Boldea, I., Tutelea, L.N., Parsa, L., et al: ‘Automotive electric propulsion systems with reduced or no permanent magnets: An overview’, IEEE Trans. Ind. Electron, 2014, 61, (10), pp. 56965711.
    2. 2)
      • 2. Dorrell, D.G., Knight, A.M., Evans, L., et al: ‘Analysis and design techniques applied to hybrid vehicle drive machines—Assessment of alternative IPM and induction motor topologies’, IEEE Trans. Ind. Electron., 2012, 59, (10), pp. 36903699.
    3. 3)
      • 3. Wang, W., Fahimi, B.: ‘Comparative study of electric drives for EV/HEV propulsion system’. Proc. ESARS, Bologna, Italy, 2012, pp. 16.
    4. 4)
      • 4. Dorrell, D.G., Knight, A.M., Popescu, M., et al: ‘Comparison of different motor design drives for hybrid electric vehicles’. Proc. IEEE ECCE, 2010, pp. 33523359.
    5. 5)
      • 5. Kim, J., Jung, J., Nam, K.: ‘Dual-inverter control strategy for highspeed operation of EV induction motors’, IEEE Trans. Ind. Electron., 2004, 51, (2), pp. 312320.
    6. 6)
      • 6. Kiyota, K., Chiba, A.: ‘Design of switched reluctance motor competitive to 60 kW IPMSM in third generation hybrid electric vehicle’, IEEE Trans. Ind. Appl., 2012, 48, (6), pp. 23032309.
    7. 7)
      • 7. Chiba, A., Takano, Y., Takeno, M., et al: ‘Torquedensityandefficiencyimprovementsofaswitched reluctance motor without rare earth material for hybrid vehicles’, IEEE Trans. Ind. Appl., 2011, 47, (3), pp. 12401246.
    8. 8)
      • 8. Kiyota, K., Sugimoto, H., Chiba, A.: ‘Comparison of energy consumption of SRM and IPMS Minautomotive driving schedules’. Proc. IEEE ECCE, 2012, pp. 853860.
    9. 9)
      • 9. Takeno, M., Chiba, A., Hoshi, N., et al: ‘Test results and torque improvement of the 50-kW switched reluctance motor designed for hybrid electric vehicles’, IEEE Trans. Ind. Appl., 2012, 48, (4), pp. 13271334.
    10. 10)
      • 10. Abbasian, M., Moallem, M., Fahimi, B.: ‘Double-statorswitchedreluctance machines (DSSRM): Fundamentals and magnetic force analysis’, IEEE Trans. Energy Convers., 2010, 25, (3), pp. 589597.
    11. 11)
      • 11. Ooi, S., Morimoto, S., Sanada, M., et al: ‘Performance evaluation of a high power density PMASynRM with ferrite magnets’, IEEE Trans. Ind. Appl., 2013, 49, (3), pp. 13081315.
    12. 12)
      • 12. Vagati, A., Boazzo, B., Guglielmi, P., et al: ‘Ferrite assisted synchronous reluctance machines: A general approach’. Proc. Int. Conf. Electical Machines, Marseille, France, 2012, pp. 13151321.
    13. 13)
      • 13. Tutelea, L., Ursu, D., Boldea, I.: ‘IPM claw pole alternator system for more vehicle breaking energy recuperation’, J. Electr. Eng., 2012, 12, (4), pp. 110. Available at www.jee.ro.
    14. 14)
      • 14. Boldea, I., Tutelea, L., Abele, M., et al: ‘Comparison of automotive generator-motors with claw pole PM-less, NdFeB or ferrite PM rotors for 10 and 100 kW at 6 krpm: Optimal design’, Politehnica University Timisoara, Timisoara, Romania, Internal Research Report, 2012.
    15. 15)
      • 15. Weh, H., Moseback, M., May, H.: ‘Design concepts and force generation in inverter-fed synchronous machines with permanent magnet excitation’, IEEE Trans. Magn., 1984, MAG-20, (5), pp. 17561761.
    16. 16)
      • 16. Sulaiman, E., Kosaka, T., Matsui, N.: ‘A new structure of 12Slot-10Pole field-excitation flux switching synchronous machine for hybrid electric vehicles’. Proc. EPE Conf., Birmingham, UK, 2011, pp. 110.
    17. 17)
      • 17. Sulaiman, E., Kosaka, T., Matsui, N.: ‘High power density design of 6-slot–8-pole hybrid excitation flux switching machine for hybrid electric vehicles’, IEEE Trans. Magn., 2011, 47, (3), pp. 12731281.
    18. 18)
      • 18. Chen, J.T., Zhu, Z.Q., Iwasaki, S., et al: ‘A novel E-core switched-flux PM brushless ac machine’, IEEE Trans. Ind. Appl., 2011, 47, (3), pp. 12731282.
    19. 19)
      • 19. Liao, Y., Lipo, T.A.: ‘A new doubly salient permanent magnet motor for adjustable speed drives’, Electr. Mach. Power Syst., 1994, 22, (2), pp. 254270.
    20. 20)
      • 20. Rossi, C., Casadei, D., Pilati, A., et al: ‘Wound rotor salient pole synchronous machine drive for electric traction’. Conf. Rec. IEEE IAS Annual Meeting, 2006, pp. 12351241.
    21. 21)
      • 21. Riba, J.-R., López-Torres, C., Romeral, L., et al: ‘Rare-earth-free propulsion motors for electric vehicles: A technology review’, Renew. Sustain. Energy Rev., 2016, 57, pp. 367379.
    22. 22)
      • 22. Widmer, J.D., Martin, R., Kimiabeigi, M.: ‘Electric vehicle traction motors without rare earth magnets’, Sustain. Mater. Technol., 2015, 3, pp. 713.
    23. 23)
      • 23. El-Refaie, A.M.: ‘Motors/generators for traction/propulsion applications: A review’, IEEE Veh. Technol. Mag., 2013, 8, (1), pp. 9099.
    24. 24)
      • 24. Kimiabeigi, M., Long, R., Widmer, J., et al: ‘Comparative assessment of single piece and fir tree based rotor designs for low cost electric vehicle application’, IEEE Trans. Energy. Convers, 2017, doi: 10.1109/TEC.2017.2662579.
    25. 25)
      • 25. Raminosoa, T., El-Refaie, A., Pan, D., et al: ‘Reduced rare-earth flux switching machines for traction applications’, IEEE Trans. Ind. Appl., 2015, 51, (4), pp. 29592971.
    26. 26)
      • 26. McFarland, J., Jahns, T., EL-Refaie, A.: ‘Analysis of the torque production mechanism for flux-switching permanent magnet machines’, IEEE Trans. Ind. Appl., 2015, 51, (4), pp. 30413049.
    27. 27)
      • 27. McFarland, J., Jahns, T., EL-Refaie, A.: ‘Demagnetization performance characteristics of flux switching permanent magnet machines’. ICEM 2014, Berlin, September 2014.
    28. 28)
      • 28. McFarland, J., Jahns, T., El-Refaie, A., et al: ‘Effect of magnet properties on power density and flux-weakening performance of high-speed interior permanent magnet synchronous machines’. ECCE, Pittsburgh, PA, September 2014.
    29. 29)
      • 29. Alioto, S., Reddy, P., EL-Refaie, A.M., et al: ‘Effect of magnet types on performance of high speed spoke interior permanent magnet machines designed for traction applications’, IEEE Trans. Ind. Appl., 2015, 51, (3), pp. 21482160.
    30. 30)
      • 30. Raminosoa, T., Torrey, D., El-Refaie, A., et al: ‘Sinusoidal reluctance machine with DC winding: an attractive non-permanent magnet option’, IEEE Trans. Ind. Appl., 2016, 52, (3), pp. 21292137.
    31. 31)
      • 31. Reddy, P., El-Refaie, A., Alexander, J.: ‘Design of synchronous reluctance motor utilizing dual-phase magnetic materials for traction applications’. Presented at ECCE, Montreal, Canada, 2015.
    32. 32)
      • 32. Reddy, P., Grace, K., EL-Refaie, A.: ‘Conceptual design of sleeve rotor synchronous reluctance motor for traction applications’, IET Power Appl., 2016, 10, (5), pp. 368374..
    33. 33)
      • 33. Raminosoa, T., Torrey, D., EL-Refaie, A., et al: ‘Robust non-permanent magnet motors for vehicle propulsion’. Presented at IEMDC 2015, Coeur d'Alene, Idaho.
    34. 34)
      • 34. https://www1.eere.energy.gov/vehiclesandfuels/pdfs/program/vt_mypp_2011-2015.pdf.
    35. 35)
      • 35. https://energy.gov/sites/prod/files/2014/04/f15/2013_apeem_report.pdf (page 191).
    36. 36)
      • 36. Introduction to Electric Machines and Drives Hardcover – May 5, 2010, byNovotny, D.W., Lipo, T.A., Jahns, T.M., et al.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2016.0068
Loading

Related content

content/journals/10.1049/iet-est.2016.0068
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address