access icon free Comparison of traction motors that reduce or eliminate rare-earth materials

Important global efforts are underway toward lowering the cost of electric machines for electric and hybrid vehicles by reducing or eliminating the use of rare earth materials which have been experiencing significant price increases and volatility. This study will present several designs that reduce or eliminate rare-earth materials. All these designs are targeting the same set of specifications of 55 kW peak at 2800 rpm and 30 kW continuous over a speed range going from 2800–14,000 rpm. This provides a fair basis of comparison of various machine topologies. The study will provide a quantitative comparison of the performance of various machine topologies as well as highlight the key tradeoffs.

Inspec keywords: hybrid electric vehicles; traction motors; electric machines

Other keywords: electric machines; hybrid vehicles; power 55 kW; rare-earth materials; power 30 kW; traction motors; electric vehicles; machine topologies

Subjects: a.c. machines; d.c. machines; Transportation

References

    1. 1)
      • 12. Vagati, A., Boazzo, B., Guglielmi, P., et al: ‘Ferrite assisted synchronous reluctance machines: A general approach’. Proc. Int. Conf. Electical Machines, Marseille, France, 2012, pp. 13151321.
    2. 2)
      • 23. El-Refaie, A.M.: ‘Motors/generators for traction/propulsion applications: A review’, IEEE Veh. Technol. Mag., 2013, 8, (1), pp. 9099.
    3. 3)
      • 15. Weh, H., Moseback, M., May, H.: ‘Design concepts and force generation in inverter-fed synchronous machines with permanent magnet excitation’, IEEE Trans. Magn., 1984, MAG-20, (5), pp. 17561761.
    4. 4)
      • 25. Raminosoa, T., El-Refaie, A., Pan, D., et al: ‘Reduced rare-earth flux switching machines for traction applications’, IEEE Trans. Ind. Appl., 2015, 51, (4), pp. 29592971.
    5. 5)
      • 1. Boldea, I., Tutelea, L.N., Parsa, L., et al: ‘Automotive electric propulsion systems with reduced or no permanent magnets: An overview’, IEEE Trans. Ind. Electron, 2014, 61, (10), pp. 56965711.
    6. 6)
      • 31. Reddy, P., El-Refaie, A., Alexander, J.: ‘Design of synchronous reluctance motor utilizing dual-phase magnetic materials for traction applications’. Presented at ECCE, Montreal, Canada, 2015.
    7. 7)
      • 6. Kiyota, K., Chiba, A.: ‘Design of switched reluctance motor competitive to 60 kW IPMSM in third generation hybrid electric vehicle’, IEEE Trans. Ind. Appl., 2012, 48, (6), pp. 23032309.
    8. 8)
      • 32. Reddy, P., Grace, K., EL-Refaie, A.: ‘Conceptual design of sleeve rotor synchronous reluctance motor for traction applications’, IET Power Appl., 2016, 10, (5), pp. 368374..
    9. 9)
      • 10. Abbasian, M., Moallem, M., Fahimi, B.: ‘Double-statorswitchedreluctance machines (DSSRM): Fundamentals and magnetic force analysis’, IEEE Trans. Energy Convers., 2010, 25, (3), pp. 589597.
    10. 10)
      • 26. McFarland, J., Jahns, T., EL-Refaie, A.: ‘Analysis of the torque production mechanism for flux-switching permanent magnet machines’, IEEE Trans. Ind. Appl., 2015, 51, (4), pp. 30413049.
    11. 11)
      • 19. Liao, Y., Lipo, T.A.: ‘A new doubly salient permanent magnet motor for adjustable speed drives’, Electr. Mach. Power Syst., 1994, 22, (2), pp. 254270.
    12. 12)
      • 35. https://energy.gov/sites/prod/files/2014/04/f15/2013_apeem_report.pdf (page 191).
    13. 13)
      • 18. Chen, J.T., Zhu, Z.Q., Iwasaki, S., et al: ‘A novel E-core switched-flux PM brushless ac machine’, IEEE Trans. Ind. Appl., 2011, 47, (3), pp. 12731282.
    14. 14)
      • 33. Raminosoa, T., Torrey, D., EL-Refaie, A., et al: ‘Robust non-permanent magnet motors for vehicle propulsion’. Presented at IEMDC 2015, Coeur d'Alene, Idaho.
    15. 15)
      • 2. Dorrell, D.G., Knight, A.M., Evans, L., et al: ‘Analysis and design techniques applied to hybrid vehicle drive machines—Assessment of alternative IPM and induction motor topologies’, IEEE Trans. Ind. Electron., 2012, 59, (10), pp. 36903699.
    16. 16)
      • 11. Ooi, S., Morimoto, S., Sanada, M., et al: ‘Performance evaluation of a high power density PMASynRM with ferrite magnets’, IEEE Trans. Ind. Appl., 2013, 49, (3), pp. 13081315.
    17. 17)
      • 14. Boldea, I., Tutelea, L., Abele, M., et al: ‘Comparison of automotive generator-motors with claw pole PM-less, NdFeB or ferrite PM rotors for 10 and 100 kW at 6 krpm: Optimal design’, Politehnica University Timisoara, Timisoara, Romania, Internal Research Report, 2012.
    18. 18)
      • 28. McFarland, J., Jahns, T., El-Refaie, A., et al: ‘Effect of magnet properties on power density and flux-weakening performance of high-speed interior permanent magnet synchronous machines’. ECCE, Pittsburgh, PA, September 2014.
    19. 19)
      • 34. https://www1.eere.energy.gov/vehiclesandfuels/pdfs/program/vt_mypp_2011-2015.pdf.
    20. 20)
      • 3. Wang, W., Fahimi, B.: ‘Comparative study of electric drives for EV/HEV propulsion system’. Proc. ESARS, Bologna, Italy, 2012, pp. 16.
    21. 21)
      • 9. Takeno, M., Chiba, A., Hoshi, N., et al: ‘Test results and torque improvement of the 50-kW switched reluctance motor designed for hybrid electric vehicles’, IEEE Trans. Ind. Appl., 2012, 48, (4), pp. 13271334.
    22. 22)
      • 22. Widmer, J.D., Martin, R., Kimiabeigi, M.: ‘Electric vehicle traction motors without rare earth magnets’, Sustain. Mater. Technol., 2015, 3, pp. 713.
    23. 23)
      • 21. Riba, J.-R., López-Torres, C., Romeral, L., et al: ‘Rare-earth-free propulsion motors for electric vehicles: A technology review’, Renew. Sustain. Energy Rev., 2016, 57, pp. 367379.
    24. 24)
      • 16. Sulaiman, E., Kosaka, T., Matsui, N.: ‘A new structure of 12Slot-10Pole field-excitation flux switching synchronous machine for hybrid electric vehicles’. Proc. EPE Conf., Birmingham, UK, 2011, pp. 110.
    25. 25)
      • 36. Introduction to Electric Machines and Drives Hardcover – May 5, 2010, byNovotny, D.W., Lipo, T.A., Jahns, T.M., et al.
    26. 26)
      • 17. Sulaiman, E., Kosaka, T., Matsui, N.: ‘High power density design of 6-slot–8-pole hybrid excitation flux switching machine for hybrid electric vehicles’, IEEE Trans. Magn., 2011, 47, (3), pp. 12731281.
    27. 27)
      • 30. Raminosoa, T., Torrey, D., El-Refaie, A., et al: ‘Sinusoidal reluctance machine with DC winding: an attractive non-permanent magnet option’, IEEE Trans. Ind. Appl., 2016, 52, (3), pp. 21292137.
    28. 28)
      • 5. Kim, J., Jung, J., Nam, K.: ‘Dual-inverter control strategy for highspeed operation of EV induction motors’, IEEE Trans. Ind. Electron., 2004, 51, (2), pp. 312320.
    29. 29)
      • 4. Dorrell, D.G., Knight, A.M., Popescu, M., et al: ‘Comparison of different motor design drives for hybrid electric vehicles’. Proc. IEEE ECCE, 2010, pp. 33523359.
    30. 30)
      • 24. Kimiabeigi, M., Long, R., Widmer, J., et al: ‘Comparative assessment of single piece and fir tree based rotor designs for low cost electric vehicle application’, IEEE Trans. Energy. Convers, 2017, doi: 10.1109/TEC.2017.2662579.
    31. 31)
      • 27. McFarland, J., Jahns, T., EL-Refaie, A.: ‘Demagnetization performance characteristics of flux switching permanent magnet machines’. ICEM 2014, Berlin, September 2014.
    32. 32)
      • 13. Tutelea, L., Ursu, D., Boldea, I.: ‘IPM claw pole alternator system for more vehicle breaking energy recuperation’, J. Electr. Eng., 2012, 12, (4), pp. 110. Available at www.jee.ro.
    33. 33)
      • 20. Rossi, C., Casadei, D., Pilati, A., et al: ‘Wound rotor salient pole synchronous machine drive for electric traction’. Conf. Rec. IEEE IAS Annual Meeting, 2006, pp. 12351241.
    34. 34)
      • 7. Chiba, A., Takano, Y., Takeno, M., et al: ‘Torquedensityandefficiencyimprovementsofaswitched reluctance motor without rare earth material for hybrid vehicles’, IEEE Trans. Ind. Appl., 2011, 47, (3), pp. 12401246.
    35. 35)
      • 29. Alioto, S., Reddy, P., EL-Refaie, A.M., et al: ‘Effect of magnet types on performance of high speed spoke interior permanent magnet machines designed for traction applications’, IEEE Trans. Ind. Appl., 2015, 51, (3), pp. 21482160.
    36. 36)
      • 8. Kiyota, K., Sugimoto, H., Chiba, A.: ‘Comparison of energy consumption of SRM and IPMS Minautomotive driving schedules’. Proc. IEEE ECCE, 2012, pp. 853860.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2016.0068
Loading

Related content

content/journals/10.1049/iet-est.2016.0068
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading