http://iet.metastore.ingenta.com
1887

Comparison of traction motors that reduce or eliminate rare-earth materials

Comparison of traction motors that reduce or eliminate rare-earth materials

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Electrical Systems in Transportation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Important global efforts are underway toward lowering the cost of electric machines for electric and hybrid vehicles by reducing or eliminating the use of rare earth materials which have been experiencing significant price increases and volatility. This study will present several designs that reduce or eliminate rare-earth materials. All these designs are targeting the same set of specifications of 55 kW peak at 2800 rpm and 30 kW continuous over a speed range going from 2800–14,000 rpm. This provides a fair basis of comparison of various machine topologies. The study will provide a quantitative comparison of the performance of various machine topologies as well as highlight the key tradeoffs.

References

    1. 1)
      • I. Boldea , L.N. Tutelea , L. Parsa .
        1. Boldea, I., Tutelea, L.N., Parsa, L., et al: ‘Automotive electric propulsion systems with reduced or no permanent magnets: An overview’, IEEE Trans. Ind. Electron, 2014, 61, (10), pp. 56965711.
        . IEEE Trans. Ind. Electron , 10 , 5696 - 5711
    2. 2)
      • D.G. Dorrell , A.M. Knight , L. Evans .
        2. Dorrell, D.G., Knight, A.M., Evans, L., et al: ‘Analysis and design techniques applied to hybrid vehicle drive machines—Assessment of alternative IPM and induction motor topologies’, IEEE Trans. Ind. Electron., 2012, 59, (10), pp. 36903699.
        . IEEE Trans. Ind. Electron. , 10 , 3690 - 3699
    3. 3)
      • W. Wang , B. Fahimi .
        3. Wang, W., Fahimi, B.: ‘Comparative study of electric drives for EV/HEV propulsion system’. Proc. ESARS, Bologna, Italy, 2012, pp. 16.
        . Proc. ESARS , 1 - 6
    4. 4)
      • D.G. Dorrell , A.M. Knight , M. Popescu .
        4. Dorrell, D.G., Knight, A.M., Popescu, M., et al: ‘Comparison of different motor design drives for hybrid electric vehicles’. Proc. IEEE ECCE, 2010, pp. 33523359.
        . Proc. IEEE ECCE , 3352 - 3359
    5. 5)
      • J. Kim , J. Jung , K. Nam .
        5. Kim, J., Jung, J., Nam, K.: ‘Dual-inverter control strategy for highspeed operation of EV induction motors’, IEEE Trans. Ind. Electron., 2004, 51, (2), pp. 312320.
        . IEEE Trans. Ind. Electron. , 2 , 312 - 320
    6. 6)
      • K. Kiyota , A. Chiba .
        6. Kiyota, K., Chiba, A.: ‘Design of switched reluctance motor competitive to 60 kW IPMSM in third generation hybrid electric vehicle’, IEEE Trans. Ind. Appl., 2012, 48, (6), pp. 23032309.
        . IEEE Trans. Ind. Appl. , 6 , 2303 - 2309
    7. 7)
      • A. Chiba , Y. Takano , M. Takeno .
        7. Chiba, A., Takano, Y., Takeno, M., et al: ‘Torquedensityandefficiencyimprovementsofaswitched reluctance motor without rare earth material for hybrid vehicles’, IEEE Trans. Ind. Appl., 2011, 47, (3), pp. 12401246.
        . IEEE Trans. Ind. Appl. , 3 , 1240 - 1246
    8. 8)
      • K. Kiyota , H. Sugimoto , A. Chiba .
        8. Kiyota, K., Sugimoto, H., Chiba, A.: ‘Comparison of energy consumption of SRM and IPMS Minautomotive driving schedules’. Proc. IEEE ECCE, 2012, pp. 853860.
        . Proc. IEEE ECCE , 853 - 860
    9. 9)
      • M. Takeno , A. Chiba , N. Hoshi .
        9. Takeno, M., Chiba, A., Hoshi, N., et al: ‘Test results and torque improvement of the 50-kW switched reluctance motor designed for hybrid electric vehicles’, IEEE Trans. Ind. Appl., 2012, 48, (4), pp. 13271334.
        . IEEE Trans. Ind. Appl. , 4 , 1327 - 1334
    10. 10)
      • M. Abbasian , M. Moallem , B. Fahimi .
        10. Abbasian, M., Moallem, M., Fahimi, B.: ‘Double-statorswitchedreluctance machines (DSSRM): Fundamentals and magnetic force analysis’, IEEE Trans. Energy Convers., 2010, 25, (3), pp. 589597.
        . IEEE Trans. Energy Convers. , 3 , 589 - 597
    11. 11)
      • S. Ooi , S. Morimoto , M. Sanada .
        11. Ooi, S., Morimoto, S., Sanada, M., et al: ‘Performance evaluation of a high power density PMASynRM with ferrite magnets’, IEEE Trans. Ind. Appl., 2013, 49, (3), pp. 13081315.
        . IEEE Trans. Ind. Appl. , 3 , 1308 - 1315
    12. 12)
      • A. Vagati , B. Boazzo , P. Guglielmi .
        12. Vagati, A., Boazzo, B., Guglielmi, P., et al: ‘Ferrite assisted synchronous reluctance machines: A general approach’. Proc. Int. Conf. Electical Machines, Marseille, France, 2012, pp. 13151321.
        . Proc. Int. Conf. Electical Machines , 1315 - 1321
    13. 13)
      • L. Tutelea , D. Ursu , I. Boldea .
        13. Tutelea, L., Ursu, D., Boldea, I.: ‘IPM claw pole alternator system for more vehicle breaking energy recuperation’, J. Electr. Eng., 2012, 12, (4), pp. 110. Available at www.jee.ro.
        . J. Electr. Eng. , 4 , 1 - 10
    14. 14)
      • I. Boldea , L. Tutelea , M. Abele .
        14. Boldea, I., Tutelea, L., Abele, M., et al: ‘Comparison of automotive generator-motors with claw pole PM-less, NdFeB or ferrite PM rotors for 10 and 100 kW at 6 krpm: Optimal design’, Politehnica University Timisoara, Timisoara, Romania, Internal Research Report, 2012.
        .
    15. 15)
      • H. Weh , M. Moseback , H. May .
        15. Weh, H., Moseback, M., May, H.: ‘Design concepts and force generation in inverter-fed synchronous machines with permanent magnet excitation’, IEEE Trans. Magn., 1984, MAG-20, (5), pp. 17561761.
        . IEEE Trans. Magn. , 5 , 1756 - 1761
    16. 16)
      • E. Sulaiman , T. Kosaka , N. Matsui .
        16. Sulaiman, E., Kosaka, T., Matsui, N.: ‘A new structure of 12Slot-10Pole field-excitation flux switching synchronous machine for hybrid electric vehicles’. Proc. EPE Conf., Birmingham, UK, 2011, pp. 110.
        . Proc. EPE Conf. , 1 - 10
    17. 17)
      • E. Sulaiman , T. Kosaka , N. Matsui .
        17. Sulaiman, E., Kosaka, T., Matsui, N.: ‘High power density design of 6-slot–8-pole hybrid excitation flux switching machine for hybrid electric vehicles’, IEEE Trans. Magn., 2011, 47, (3), pp. 12731281.
        . IEEE Trans. Magn. , 3 , 1273 - 1281
    18. 18)
      • J.T. Chen , Z.Q. Zhu , S. Iwasaki .
        18. Chen, J.T., Zhu, Z.Q., Iwasaki, S., et al: ‘A novel E-core switched-flux PM brushless ac machine’, IEEE Trans. Ind. Appl., 2011, 47, (3), pp. 12731282.
        . IEEE Trans. Ind. Appl. , 3 , 1273 - 1282
    19. 19)
      • Y. Liao , T.A. Lipo .
        19. Liao, Y., Lipo, T.A.: ‘A new doubly salient permanent magnet motor for adjustable speed drives’, Electr. Mach. Power Syst., 1994, 22, (2), pp. 254270.
        . Electr. Mach. Power Syst. , 2 , 254 - 270
    20. 20)
      • C. Rossi , D. Casadei , A. Pilati .
        20. Rossi, C., Casadei, D., Pilati, A., et al: ‘Wound rotor salient pole synchronous machine drive for electric traction’. Conf. Rec. IEEE IAS Annual Meeting, 2006, pp. 12351241.
        . Conf. Rec. IEEE IAS Annual Meeting , 1235 - 1241
    21. 21)
      • J.-R. Riba , C. López-Torres , L. Romeral .
        21. Riba, J.-R., López-Torres, C., Romeral, L., et al: ‘Rare-earth-free propulsion motors for electric vehicles: A technology review’, Renew. Sustain. Energy Rev., 2016, 57, pp. 367379.
        . Renew. Sustain. Energy Rev. , 367 - 379
    22. 22)
      • J.D. Widmer , R. Martin , M. Kimiabeigi .
        22. Widmer, J.D., Martin, R., Kimiabeigi, M.: ‘Electric vehicle traction motors without rare earth magnets’, Sustain. Mater. Technol., 2015, 3, pp. 713.
        . Sustain. Mater. Technol. , 7 - 13
    23. 23)
      • A.M. El-Refaie .
        23. El-Refaie, A.M.: ‘Motors/generators for traction/propulsion applications: A review’, IEEE Veh. Technol. Mag., 2013, 8, (1), pp. 9099.
        . IEEE Veh. Technol. Mag. , 1 , 90 - 99
    24. 24)
      • M. Kimiabeigi , R. Long , J. Widmer .
        24. Kimiabeigi, M., Long, R., Widmer, J., et al: ‘Comparative assessment of single piece and fir tree based rotor designs for low cost electric vehicle application’, IEEE Trans. Energy. Convers, 2017, doi: 10.1109/TEC.2017.2662579.
        . IEEE Trans. Energy. Convers
    25. 25)
      • T. Raminosoa , A. El-Refaie , D. Pan .
        25. Raminosoa, T., El-Refaie, A., Pan, D., et al: ‘Reduced rare-earth flux switching machines for traction applications’, IEEE Trans. Ind. Appl., 2015, 51, (4), pp. 29592971.
        . IEEE Trans. Ind. Appl. , 4 , 2959 - 2971
    26. 26)
      • J. McFarland , T. Jahns , A. EL-Refaie .
        26. McFarland, J., Jahns, T., EL-Refaie, A.: ‘Analysis of the torque production mechanism for flux-switching permanent magnet machines’, IEEE Trans. Ind. Appl., 2015, 51, (4), pp. 30413049.
        . IEEE Trans. Ind. Appl. , 4 , 3041 - 3049
    27. 27)
      • J. McFarland , T. Jahns , A. EL-Refaie .
        27. McFarland, J., Jahns, T., EL-Refaie, A.: ‘Demagnetization performance characteristics of flux switching permanent magnet machines’. ICEM 2014, Berlin, September 2014.
        . ICEM 2014
    28. 28)
      • J. McFarland , T. Jahns , A. El-Refaie .
        28. McFarland, J., Jahns, T., El-Refaie, A., et al: ‘Effect of magnet properties on power density and flux-weakening performance of high-speed interior permanent magnet synchronous machines’. ECCE, Pittsburgh, PA, September 2014.
        . ECCE
    29. 29)
      • S. Alioto , P. Reddy , A.M. EL-Refaie .
        29. Alioto, S., Reddy, P., EL-Refaie, A.M., et al: ‘Effect of magnet types on performance of high speed spoke interior permanent magnet machines designed for traction applications’, IEEE Trans. Ind. Appl., 2015, 51, (3), pp. 21482160.
        . IEEE Trans. Ind. Appl. , 3 , 2148 - 2160
    30. 30)
      • T. Raminosoa , D. Torrey , A. El-Refaie .
        30. Raminosoa, T., Torrey, D., El-Refaie, A., et al: ‘Sinusoidal reluctance machine with DC winding: an attractive non-permanent magnet option’, IEEE Trans. Ind. Appl., 2016, 52, (3), pp. 21292137.
        . IEEE Trans. Ind. Appl. , 3 , 2129 - 2137
    31. 31)
      • P. Reddy , A. El-Refaie , J. Alexander .
        31. Reddy, P., El-Refaie, A., Alexander, J.: ‘Design of synchronous reluctance motor utilizing dual-phase magnetic materials for traction applications’. Presented at ECCE, Montreal, Canada, 2015.
        . Presented at ECCE
    32. 32)
      • P. Reddy , K. Grace , A. EL-Refaie .
        32. Reddy, P., Grace, K., EL-Refaie, A.: ‘Conceptual design of sleeve rotor synchronous reluctance motor for traction applications’, IET Power Appl., 2016, 10, (5), pp. 368374..
        . IET Power Appl. , 5 , 368 - 374
    33. 33)
      • T. Raminosoa , D. Torrey , A. EL-Refaie .
        33. Raminosoa, T., Torrey, D., EL-Refaie, A., et al: ‘Robust non-permanent magnet motors for vehicle propulsion’. Presented at IEMDC 2015, Coeur d'Alene, Idaho.
        .
    34. 34)
      • 34. https://www1.eere.energy.gov/vehiclesandfuels/pdfs/program/vt_mypp_2011-2015.pdf.
        .
    35. 35)
      • 35. https://energy.gov/sites/prod/files/2014/04/f15/2013_apeem_report.pdf (page 191).
        .
    36. 36)
      • D.W. Novotny , T.A. Lipo , T.M. Jahns .
        36. Introduction to Electric Machines and Drives Hardcover – May 5, 2010, byNovotny, D.W., Lipo, T.A., Jahns, T.M., et al.
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2016.0068
Loading

Related content

content/journals/10.1049/iet-est.2016.0068
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address