access icon free Demonstration of fast-acting protection as a key enabler for more-electric aircraft interconnected architectures

Driven by anticipated fuel-burn and efficiency benefits, the more-electric aircraft (MEA) concept is a technological shift in the aviation industry, which seeks to replace mechanical, hydraulic and pneumatic functions with electrical equivalents. This shift has greatly increased the electrical power demands of aircraft and has made MEA networks larger and more complex. Consequently, new and more efficient electrical architectures are required, with interconnected generation potentially being one design approach that could bring improved performance and fuel savings. This study discusses the current state of interconnected generation in the aviation industry and key technological advances that could facilitate feasible interconnection options. This study demonstrates that interconnected systems can breach certification rules under fault conditions. Through modelling and simulation, it investigates the airworthiness-requirements compliance of potential impedance solutions to this issue and quantifies the potential impact on system weight. It concludes by identifying fast fault clearing protection as being a key enabling technology that facilitates the use of light-weight and standards-compliant architectures.

Inspec keywords: pneumatic systems; aircraft; aerospace industry; electric vehicles; energy conservation

Other keywords: pneumatic functions; mechanical functions; fuel savings; more-electric aircraft; aviation industry; fast-acting protection; electric aircraft interconnected architectures; hydraulic functions

Subjects: Transportation

References

    1. 1)
      • 35. Hield, P.M., Cundy, J.M., Midgley, R.A., et al: ‘Shaft power transfer in gas turbine engines with machines operable as generators or motors’. U.S. patent, US5694765, December 1997.
    2. 2)
      • 32. Haire, J.: ‘F-22 program delivers power system breakthrough’. U.S. Air Force News Release, July 2000.
    3. 3)
      • 46. Baran, M.E., Mahajan, N.R.: ‘Overcurrent protection on voltage-source-converter-based multiterminal DC distribution systems’, IEEE Trans. Power Deliv., 2007, 22, (1), pp. 406412.
    4. 4)
      • 36. Eick, C.D., Gaines, L.T., Laidlaw, M.J., et al: ‘More electric aircraft power transfer systems and methods’. U.S. patent, 7552582, June 2009.
    5. 5)
      • 19. Izquierdo, D., Barrado, A., Raga, C., et al: ‘Protection devices for aircraft electrical power distribution systems: state of the art’, IEEE Trans. Aerosp. Electron. Syst., 2011, 47, (3), pp. 15381550, doi: 10.1109/TAES.2011.5937248.
    6. 6)
      • 39. Abdel-Hafez, A.: ‘Power generation and distribution system for a more electric aircraft – a review’, in Agarwal, R.Dr. (Ed.): ‘Recent Advances in Aircraft Technology’ (InTech, 2012), ISBN: 978-953-51-0150-5.
    7. 7)
      • 29. Hirst, M., McLoughlin, A., Norman, P.J., et al: ‘Demonstrating the more electric engine: a step towards the power optimized aircraft’, IET Electr. Power Appl., 2011, 5, (1), pp. 313, doi: 10.1049/iet-epa.2009.0285.
    8. 8)
      • 14. The Boeing Company: ‘Boeing 747 flight crew operations manual (chapter 6: electrical)’, Smart Cockpit, April 2006, http://www.smartcockpit.com/docs/Electrical_(B747-400).pdf, 23 April 2014.
    9. 9)
      • 60. Lai, K., Illindala, M.S., Haj-ahmed, M.A.: ‘Comprehensive protection strategy for an islanded microgrid using intelligent relays’, IEEE Trans. Ind. Appl., 2016, 1, (99), pp. 4755, doi: 10.1109/TIA.2016.2604203.
    10. 10)
      • 3. Sinnett, M.: ‘787 no-bleed systems: saving fuel and enhancing operational efficiencies’, Boeing Aero Mag., 2007, (28), pp. 611.
    11. 11)
      • 31. Fletcher, S.: ‘Protection of physically compact multiterminal DC power systems’. PhD thesis, University of Strathclyde, 2013.
    12. 12)
      • 54. Commercial product source: ‘Low profile, high current power inductor’, March 2015. http://www.vishay.com/ppg?34183.
    13. 13)
      • 56. Fernando, W.U.N., Barnes, M., Marjanovic, O.: ‘Modelling and control of variable frequency multiphase multi-machine ac-dc power conversion systems’. Fifth Int. Conf. on Power Electronics, Machines and Drives, April 2010, doi: 10.1049/cp.2010.0082.
    14. 14)
      • 9. Airbus Training: ‘Airbus A340 simulator flight crew operating manual’. Smart Cockpit, http://www.smartcockpit.com/docs/FCOM_A340-Electrical.pdf.
    15. 15)
      • 26. Kern, J.M., Wiegman, H.L.N.: ‘Integrated electrical power extraction for aircraft engines’. U.S. Patent, US7468561 B223, December 2008.
    16. 16)
      • 43. Elserougi, A.A., Abdel-Khalik, A.S., Massoud, A.M., et al: ‘A new protection scheme for HVDC converters against DC-side faults with current suppression capability’, IEEE Trans. Power Deliv., 2014, 29, (4), pp. 15691577.
    17. 17)
      • 38. Muehlbauer, K., Gerling, D.: ‘Two-generator-concepts for electric power generation in more electric aircraft engine’. XIX Int. Conf. on Electrical Machines – ICEM, Rome, 2010.
    18. 18)
      • 53. Fletcher, S., Norman, P., Galloway, S., et al: ‘Determination of protection system requirements for dc unmanned aerial vehicle electrical power networks for enhanced capability and survivability’, IET Electr. Syst. Transp., 2011, 1, (4), pp. 137147, doi: 10.1049/iet-est.2010.0070.
    19. 19)
      • 48. Jovcic, D., Taherbaneh, M., Taisne, J.-P., et al: ‘Offshore DC grids as an interconnection of radial systems: protection and control aspects’, IEEE Trans. Smart Grid, 2015, 6, (2), pp. 903910.
    20. 20)
      • 17. Sidelkovskiy, D.B.: ‘Multi-shaft gas turbine engine’. U.S. Patent, WO2014137452 A1, September 2014.
    21. 21)
      • 6. Garcia, A., Cusido, J., Rosero, J.A., et al: ‘Reliable electro-mechanical actuators in aircraft’, IEEE Aerosp. Electron. Syst. Mag., 2008, 23, (8), pp. 1925, doi: 10.1109/MAES.2008.4607895.
    22. 22)
      • 59. Rakhra, P., Norman, P.J., Galloway, S.J., et al: ‘Experimental validation of protection blinding on DC aircraft electrical power systems with power-dense energy storage’. Eighth IET Conf. on Power Electronics, Machines and Drives, April 2016, doi: 10.149/cp.2016.0158.
    23. 23)
      • 5. Rosero, J.A., Ortega, J.A., Aldabas, E., et al: ‘Moving towards a more-electric aircraft’, IEEE Aerosp. Electron. Syst. Mag., 2007, 22, (3), pp. 39, doi: 10.1109/MAES.2007.340500.
    24. 24)
      • 21. Liu, W., Huang, A.Q.: ‘A novel high current solid state power controller’. 31st Annual Conf. of IEEE Industrial Electronics Society, IECON, 2005, p. 5, doi: 10.1109/IECON.2005.1569094.
    25. 25)
      • 55. Paquette, A.D., Reno, M.J., Harley, R.G., et al: ‘Transient load sharing between inverters and synchronous generators in islanded microgrids’, IEEE Energy Convers. Congress Expos., 2012, doi: 10.1109/ECCE.2012.6342533.
    26. 26)
      • 57. Gkountaras, A., Dieckerhoff, S., Sezi, T.: ‘Real time simulation and stability evaluation of a medium voltage hybrid microgrid’. Seventh Int. Conf. on Power Electronics, Machines and Drives, April 2014, doi: 10.1049/cp.2014.0490.
    27. 27)
      • 16. Papandreas, E.: ‘Multi spool gas turbine system’. U.S. Patent, US8220245 B1, July 2012.
    28. 28)
      • 22. Zarati, K., Duplaa, S., Carbonneau, X., et al: ‘Engine performance and surge margins optimization by means of nozzles variability’. 22nd ISABE Conf., October 2015.
    29. 29)
      • 7. Kern, J.M., Wiegman, H.L.N.: ‘Integrated electrical power extraction for aircraft engines’. U.S. Patent, US7468561 B2, December 2008.
    30. 30)
      • 11. Tenning, C.: ‘Unplanned characteristics of the 747-400 electrical power generation system’, http://www.angelfire.com/ct3/ctenning/electrical_essays/747dash400elec/747dash400elec.html, 22 April 2014.
    31. 31)
      • 30. Hodge, C., Mattick, D.: ‘The electric warship II’, Trans. IMarE, 1997, 108, (part 2), pp. 109125.
    32. 32)
      • 15. Abdel-Hafez, A.: ‘Power generation and distribution system for a more-electric aircraft – a review’, InTech, 2012, ISBN 978-953-51-0150-5.
    33. 33)
      • 44. Cairoli, P., Dougal, R.A.: ‘New horizons in DC shipboard power systems: new fault protection strategies are essential to the adoption of dc power systems’, IEEE Electrification Mag., 2013, 1, (2), pp. 3845.
    34. 34)
      • 45. Schmerda, R., Cuzner, R., Clark, R., et al: ‘Shipboard solid-state 46Protection: overview and applications’, IEEE Electrification Mag., 2013, 1, (1), pp. 3239.
    35. 35)
      • 49. US Government: ‘MIL-STD-704F’, September2014.
    36. 36)
      • 28. Provost, M.J.: ‘The more electric aero-engine: a general overview from an engine manufacturer’. Int. Conf. on Power Electronics, Machines and Drives, 2002, pp. 246251, doi: 10.1049/cp:20020122.
    37. 37)
      • 37. Trentin, A., Zanchetta, P., Wheeler, P., et al: ‘Power conversion for a novel AC/DC aircraft electrical distribution system’, IET Electr. Syst. Transp., 2014, 4, (2), pp. 2937, doi: 10.1049/iet-est.2013.0005 [1] ‘Author Guide - IET Research Journals’, http://digital-library.theiet.org/journals/author-guide, accessed 27 November 2014.
    38. 38)
      • 27. Colin, A.O., Lebrun, A., Barjon, G.: ‘Device for producing electrical power in a two-spool gas turbine engine’. U.S. Patent, US7973422, July 2011.
    39. 39)
      • 18. Hope, R.J.: ‘Multi-shaft power extraction from gas turbine engine’. U.S. Patent, US20130247539 A1, September 2013.
    40. 40)
      • 4. Karimi, K.J.: ‘Future aircraft power systems – integration challenges’, presentation, The Boeing Company, 2007, https://www.ece.cmu.edu/~electriconf/2008/PDFs/Karimi.pdf, November 2015.
    41. 41)
      • 41. Salomonsson, D., Soder, L., Sannino, A.: ‘Protection of low-voltage DC microgrids’, IEEE Trans. Power Deliv., 2009, 24, (3), pp. 10451053.
    42. 42)
      • 40. Chang, J., Wang, A.: ‘New VF-power system architecture and evaluation for future aircraft’, IEEE Trans. Aerosp. Electron. Syst., 2006, 42, (2), pp. 527539.
    43. 43)
      • 12. Federal Aviation Administration: ‘Master Minimum Equipment List: B-707 and B-720’, November 1990.
    44. 44)
      • 24. The Boeing Company: ‘787 propulsion system’, AERO magazine, quarter 3, 2012, available at http://www.boeing.com.
    45. 45)
      • 42. Fletcher, S.D.A., Norman, P.J., Galloway, S.J., et al: ‘Optimizing the roles of unit and non-unit protection methods within DC microgrids’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 20792087.
    46. 46)
      • 58. Luo, S., Dong, X., Shi, S., et al: ‘A non-unit protection principle base on travelling wave for HVDC transmission lines’. 50th Int. Universities Power Engineering Conf., December 2015, doi: 10.1109/UPEC.2015.7339909.
    47. 47)
      • 8. Gaines, L., Auer, P., Lane, G., et al: ‘More-electric aircraft starter-generator multi-speed transmission system’. U.S. Patent, US20070151258 A1, July 2007.
    48. 48)
      • 10. Airbus: ‘Airbus A340 flight deck and systems briefing for pilots’, January 2000, http://www.smartcockpit.com/aircraft-ressources/A340_Flight_Deck_and_Systems_Briefing_For_Pilots.html, April 2014.
    49. 49)
      • 47. Jia, K., Christopher, E., Thomas, D., et al: ‘Advanced DC zonal marine power system protection’, IET Gener. Transm. Distrib., 2014, 8, (2), pp. 301309.
    50. 50)
      • 25. Derouineau, J.: ‘Engine power extraction control system’. U.S. patent, US7285871, October 2007.
    51. 51)
      • 2. Moir, I., Seabridge, A.: ‘Aircraft systems: mechanical, electrical, and avionics subsystems integration’ (John Wiley & Sons Ltd, 2008, 3rd edn.), ISBN 978-0-470-05996-8.
    52. 52)
      • 20. Rezaei, M.A., Huang, A.: ‘Ultrafast protection of radial and looped electric power grid using a novel solid-state protection device’. 2012 IEEE Energy Conversion Congress and Exposition (ECCE), 2012, pp. 610614, doi: 10.1109/ECCE.2012.6342765.
    53. 53)
      • 34. Yue, E., Derouineau, J., Pearson, W.T.: ‘Paralleled HVDC bus electrical power system architecture’. U.S. patent, US7936086m, May 2011.
    54. 54)
      • 1. The Boeing Company: ‘787 no bleed systems’, AERO magazine, issue 28, quarter 4, 2007, available at http://www.boeing.com.
    55. 55)
      • 52. AE-7M Subcommittee: ‘Aircraft electrical power systems modeling and simulation definitions’. SAE Aerospace Information Report, AIR6326, 2015.
    56. 56)
      • 13. Mackenzie-Leigh, G., Norman, P., Galloway, S., et al: ‘Defining requirements for the implementation of interconnected generation in future civil aircraft’, presented at SAE 2013 AeroTech Congress, September 2013, doi: 10.4271/2013-01-2125.
    57. 57)
      • 51. Sheridan, D., Casady, J., Mazzola, M., et al: ‘Silicon carbide power electronics for high-temperature power conversion and solid-state circuit protection in aircraft applications’. SAE Int., 2011, doi: 10.4271/2011-01-2625.
    58. 58)
      • 33. Michalko, R.G.: ‘Electric power distribution system and method with active load control’. U.S. patent, US7400065, July 2008.
    59. 59)
      • 23. Rensch, D.: ‘Turbofan engine with at least one apparatus for driving at least one generator’. U.S. Patent, 20100000226 A107, January 2010.
    60. 60)
      • 50. van den Bossche, D.: ‘The A380 flight control electrohydrostatic actuators, achievements and lessons learnt’. 25th Int. Congress of the Aeronautical Sciences, ICAS, 2006.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2016.0065
Loading

Related content

content/journals/10.1049/iet-est.2016.0065
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading