http://iet.metastore.ingenta.com
1887

Loss-of-life investigation of EV batteries used as smart energy storage for commercial building-based solar photovoltaic systems

Loss-of-life investigation of EV batteries used as smart energy storage for commercial building-based solar photovoltaic systems

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Electrical Systems in Transportation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a loss-of-life (LoL) analysis for electric vehicle (EV) batteries, when they are being used as smart energy storage (SES) systems in a typical solar photovoltaic (PV) system installed in building environment. EVs can be considered as ideal energy storage for solar PV system installed in commercial/office buildings. This is attributable to the fact that the idle time-period of the EVs during the daytime, and the time-period during which the solar PV requires the energy storage intersect perfectly. However, it is to be demonstrated that using EVs as SES for solar PV system in commercial/office buildings would not have a significant impact on the battery lifetime and driving range of EVs. Hence, LoL analysis is essential to get a clear picture on the expected LoL for the EV batteries when EVs are used as SES for solar PV. Furthermore, the LoL of the individual EV batteries depends on the priority criteria used for charging/discharging the EVs, namely time coordinated and power coordinated vehicle-to-grid (V2G) algorithms. Hence, a comparison of LoL for different types of EVs while using different priority criteria in both the types of V2G is presented.

References

    1. 1)
      • A.H. Lim . (2015)
        1. Lim, A.H.: ‘HDB's Experience in Solar PV System’, http://www.spring.gov.sg/NewsEvents/Events/Documents/SS601/7-HDBExperienceinSolarPVSystem-AhHee.pdf, accessed July2015.
        .
    2. 2)
      • R. Wong .
        2. Wong, R.: ‘Solar potential of HDB blocks in Singapore’, Energy Stud. Inst. Bull., 2011, 4, (3), pp. 67.
        . Energy Stud. Inst. Bull. , 3 , 6 - 7
    3. 3)
      • (2015)
        3. ‘900 HDB blocks, eight govt sites to be equipped with solar panels’, https://www.edb.gov.sg/content/edb/en/news-and-events/news/2015-news/hdb-launches-first-tender-under-edb-led-programme-solarnova.html, accessed July2015.
        .
    4. 4)
      • A.T. Al-Awami , E. Sortomme .
        4. Al-Awami, A.T., Sortomme, E.: ‘Coordinating vehicle-to-grid services with energy trading’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 453462.
        . IEEE Trans. Smart Grid , 1 , 453 - 462
    5. 5)
      • M. Falahi , H.M. Chou , M. Ehsani .
        5. Falahi, M., Chou, H.M., Ehsani, M., et al: ‘Potential power quality benefits of electric vehicles’, IEEE Trans. Sustain. Energy, 2013, 4, (4), pp. 10161023.
        . IEEE Trans. Sustain. Energy , 4 , 1016 - 1023
    6. 6)
      • H. Sekyung , H. Soohee , K. Sezaki .
        6. Sekyung, H., Soohee, H., Sezaki, K.: ‘Development of an optimal vehicle-to-grid aggregator for frequency regulation’, IEEE Trans. Smart Grid, 2010, 1, (1), pp. 6572.
        . IEEE Trans. Smart Grid , 1 , 65 - 72
    7. 7)
      • H. Liu , Z. Hu , Y. Song .
        7. Liu, H., Hu, Z., Song, Y., et al: ‘Decentralized vehicle-to-grid control for primary frequency regulation considering charging demands’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 34803489.
        . IEEE Trans. Power Syst. , 3 , 3480 - 3489
    8. 8)
      • J.J. Escudero-Garzas , A. Garcia-Armada , G. Seco-Granados .
        8. Escudero-Garzas, J.J., Garcia-Armada, A., Seco-Granados, G.: ‘Fair design of plug-in electric vehicles aggregator for V2G regulation’, IEEE Trans. Vehicular Technol., 2012, 61, (8), pp. 34063419.
        . IEEE Trans. Vehicular Technol. , 8 , 3406 - 3419
    9. 9)
      • R.A. Mehdi .
        9. Mehdi, R.A.: ‘Spinning reserve supply with presence of electric vehicles aggregator considering compromise between cost and reliability’, IET. Gener. Transm. Distrib., 2013, 7, (12), pp. 14421452.
        . IET. Gener. Transm. Distrib. , 12 , 1442 - 1452
    10. 10)
      • A. Gholami , J. Ansari , J. Mahdi .
        10. Gholami, A., Ansari, J., Mahdi, J., et al: ‘Environmental/economic dispatch incorporating renewable energy sources and plug-in vehicles’, IET. Gener. Transm. Distrib., 2014, 8, (12), pp. 21832198.
        . IET. Gener. Transm. Distrib. , 12 , 2183 - 2198
    11. 11)
      • A. Nebel , C. Kruger , F. Merten .
        11. Nebel, A., Kruger, C., Merten, F.: ‘Vehicle to grid and demand side management -an assessment of different strategies for the integration of electric vehicles’. Proc. IET Conf. on Renewable Power Generation, 2011, pp. 143143.
        . Proc. IET Conf. on Renewable Power Generation , 143 - 143
    12. 12)
      • W. Kempton , J. Tomić .
        12. Kempton, W., Tomić, J.: ‘Vehicle-to-grid power implementation: From stabilizing the grid to supporting large-scale renewable energy’, J. Power Sources, 2005, 144, (1), pp. 280294.
        . J. Power Sources , 1 , 280 - 294
    13. 13)
      • L. Drude , L.C. Pereira Junior , R. Rüther .
        13. Drude, L., Pereira Junior, L.C., Rüther, R.: ‘Photovoltaics (PV) and electric vehicle-to-grid (V2G) strategies for peak demand reduction in urban regions in Brazil in a smart grid environment’, Renew. Energy J., 2014, 68, pp. 443451.
        . Renew. Energy J. , 443 - 451
    14. 14)
      • M. Ghofrani , A. Arabali , M. Ghayekhloo .
        14. Ghofrani, M., Arabali, A., Ghayekhloo, M.: ‘Optimal charging/discharging of grid-enabled electric vehicles for predictability enhancement of PV generation’, Electric Power Syst. Res. J., 2014, 117, pp. 134142.
        . Electric Power Syst. Res. J. , 134 - 142
    15. 15)
      • M.A. Ortega-Vazquez .
        15. Ortega-Vazquez, M.A.: ‘Optimal scheduling of electric vehicle charging and vehicle-to-grid services at household level including battery degradation and price uncertainty’, IET. Gener. Transm. Distrib., 2014, 8, (6), pp. 10071016.
        . IET. Gener. Transm. Distrib. , 6 , 1007 - 1016
    16. 16)
      • T. Guena , P. Leblanc .
        16. Guena, T., Leblanc, P.: ‘How depth of discharge affects the cycle life of Lithium-Metal-Polymer batteries’. Proc. 28th INTELEC '06, 2006, pp. 18.
        . Proc. 28th INTELEC '06 , 1 - 8
    17. 17)
      • S. Karagiannopoulos , A. Rigas , N. Hatziargyriou .
        17. Karagiannopoulos, S., Rigas, A., Hatziargyriou, N., et al: ‘Battery energy storage capacity fading and control strategies for deterministic and stochastic power profiles’. Proc. IEEE Power Systems Computation Conf., 2016, pp. 17.
        . Proc. IEEE Power Systems Computation Conf. , 1 - 7
    18. 18)
      • J.L. Mathieu , J.A. Taylor .
        18. Mathieu, J.L., Taylor, J.A.: ‘Controlling nonlinear batteries for power systems: Trading off performance and battery life’. Proc. IEEE Power Systems Computation Conf., 2016, pp. 17.
        . Proc. IEEE Power Systems Computation Conf. , 1 - 7
    19. 19)
      • G. Carpinelli , F. Mottola , D. Proto .
        19. Carpinelli, G., Mottola, F., Proto, D.: ‘Optimal scheduling of a microgrid with demand response resources’, IET. Gener. Transm. Distrib., 2014, 8, (12), pp. 18911893.
        . IET. Gener. Transm. Distrib. , 12 , 1891 - 1893
    20. 20)
      • C.C. Chan , L. Jian , D. Tu .
        20. Chan, C.C., Jian, L., Tu, D.: ‘Smart charging of electric vehicles – integration of energy and information’, IET Electric. Syst. Transport., 2014, 4, (4), pp. 8996.
        . IET Electric. Syst. Transport. , 4 , 89 - 96
    21. 21)
      • (2015)
        21. ‘Singapore land transport statistics (2014) in brief’, http://www.lta.gov.sg/, accessed July2015.
        .
    22. 22)
      • A. Ashtari , E. Bibeau , S. Shahidinejad .
        22. Ashtari, A., Bibeau, E., Shahidinejad, S., et al: ‘PEV charging profile prediction and analysis based on vehicle usage data’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 341350.
        . IEEE Trans. Smart Grid , 1 , 341 - 350
    23. 23)
      • D.F.R. Melo , H.B. Gooi , T. Massier .
        23. Melo, D.F.R., Gooi, H.B., Massier, T.: ‘Charging of electric vehicles and demand response management in a Singaporean car park’. Proc. 49th UPEC, 2014, pp. 16.
        . Proc. 49th UPEC , 1 - 6
    24. 24)
      • D.L. Evans .
        24. Evans, D.L.: ‘Simplified method for predicting photovoltaic array output’, Solar Energy, 1981.
        .
    25. 25)
      • H. Beltran , E. Perez , N. Aparicio .
        25. Beltran, H., Perez, E., Aparicio, N., et al: ‘Daily solar energy estimation for minimizing energy storage requirements in PV power plants’, IEEE Trans. Sustain. Energy, 2013, 4, (2), pp. 474481.
        . IEEE Trans. Sustain. Energy , 2 , 474 - 481
    26. 26)
      • K.N. Kumar , P.H. Cheah , B. Sivaneasan .
        26. Kumar, K.N., Cheah, P.H., Sivaneasan, B., et al: ‘Electric vehicle charging profile prediction for efficient energy management in buildings’. Proc. Int. Power and Energy Conf. (IPEC), 2012, pp. 480485.
        . Proc. Int. Power and Energy Conf. (IPEC) , 480 - 485
    27. 27)
      • J.G. Hayes , K. Davis .
        27. Hayes, J.G., Davis, K.: ‘Simplified electric vehicle powertrain model for range and energy consumption based on EPA coast-down parameters and test validation by Argonne National Lab data on the Nissan Leaf’. Proc. of IEEE ITEC, 2014, pp. 16.
        . Proc. of IEEE ITEC , 1 - 6
    28. 28)
      • K. Kandasamy , D.M. Vilathgamuwa , K.-J. Tseng .
        28. Kandasamy, K., Vilathgamuwa, D.M., Tseng, K.-J.: ‘Inter-module state-of-charge balancing and fault-tolerant operation of cascaded H-bridge converter using multi-dimensional modulation for electric vehicle application’, IET Power Electron., 2015, 8, (10), pp. 19121919.
        . IET Power Electron. , 10 , 1912 - 1919
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2016.0056
Loading

Related content

content/journals/10.1049/iet-est.2016.0056
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address